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s 62( 2‘2(513  DEEP LEARNING CONTEXT

1IHXUDO 1HWZRUN /RVV )XQFWLRQ

KBilvkm Tr) = ﬁZ(/,wT Qu(/, 1), v I

@ u(/, r):RA RP

@ &= p(/, r) denotes model prediction

@ vobserved fromdata /" T

@ # Tr), #2{r) bobtainable P 4
2EVHUYDWLRQV e s

@ No bad local minimums
t (Kawaguchi, 2016), (Soudry and Carmon, 2016)

@ Example: ro+ MNIST+LBFGS$ {r)=0




+< 6(&21"

25 (5" MNIST 60K TRAINING, 10K TEST
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+< 6(&21"

25'(5" HYPER-PARAMETER OPTIMIZATION

Learning rate,
momentum, batchsize,
11, 12, dropout,
annealing rate ...

Two ways to dive deep when tuning: @ P
© solver fixed, tune model ﬂﬁfx
@ model fixed, tune solver et ;4\
+RZWRPLQLPL]H WRWDO XVHU WaPH"

@ Parallel autotune and SGD
@ Second-order methods




%%$&.*5281" THE DEEP LEARNING HESSIAN

The Hessian for deep learning problems has form:

1
>= = D>, G>cG+ (LY
[T | T ——
e u#0
Hn
Where G is the Jacobian of u(/, r), >gis the Hessian for the
loss function G x V) with respectto x and

P
L(L 9= 1 xGu(/, 1), 1t 2/, Nlg
@1

Note that L(/, y =0 if training error is 0, or u( /, r) is linear.




GENERALIZED GUASS-NEWTON

0 * '
% $&.*5281 MATRIX

Martens 2010 seminal work show great results by
@ Approximating >with : %0

= Y s

(LT

@ Using Levenberg-Marguardt modifications

(:+! Ab= &;

where ! is modified based on past performance
© Applying the conjugate gradient algorithm
'K\ QRW % \GH. U H PWar@hs 2012)




THE PROBLEM WITH NEWTON'’S
0 * '
% $&.*5281 METHOD

Suppose we simply solve (where >= #27r) and ;= # {r))
> b= & ;, where we need H';< 0

Using spectral decomposition >= o! o"

g = Z(ng)z&z(dé?)z

| I
A0 It b g0 B

ng

$0 $0
In general b= b brwhere

@ hymaximizes, depends on negative eigenspace

@ brminimizes, depends on positive eigenspace
$OO0OLWWDNHVLVRQHVPDOO QHIJDWLYH HL




IMPLICATIONS FOR ITERATIVE

0 * '
% $&.*5281 METHODS

@ Classical iterative methods solve equations as is:

>b= & ; unconcerned if B';' or ( 0.

@ Need to implicitly or explicitly work with &) > such that

&0 $ H;<o0

© Line-search methods use explicit modifications
© Trust-region methods use implicit modifications




,7(5%7,9( CURRENT STATE-OF-ART
62/9(56 NONCONVEXITERATIVE METHODS

@ Steihaug-Toint
@ GLTR
@ Saddle-free Newton (Dauphin et al. 2014)




L 7(5%$7,9¢(
62/0(56 CGMETHOD OVERVIEW

@ Generate { ,..., T3 such that
M>T=0if B D

© Recursively obtain approximate solution bz, as

M1 = b+ " FTE
v L KBN(b+ " T, if E>F> 0
LK G Z(+ " TR, TE>TR< O

' Here Z(h= '+ %5‘>b

F
F

@ While T>T> 0

', ks, bei, sassuming =0
' b1 minimizes quadratic model Z( B in span{ T, ..., 8.




L 7(5%7,9(
62/9(56 STEIHAUG-TOINT ALGORITHM




L 7(5%7,9(
62/9(56 STEIHAUG-TOINT ALGORITHM




L 7(5%7,9(
62/9(56 STEIHAUG-TOINT ALGORITHM




L 7(5%7,9(
62/9(56 STEIHAUG-TOINT ALGORITHM




,7(5%7,9( TRUNCATED NEWTON ERROR BOUND
62/9(56 NOT TRUE WHEN NONCONVEX

Consider the 2. trust-region problem

1 &10° 0
KIEFIQ\QIBKBBFZ} 251[0 loﬁ]b

, ba (1,
. 10° o
We can show that Z( b) < &7. However, because ;"": =0,
the Steihaug-Toint algorithm would exit immediately, with

(v 2 o )
= [&1/ 2] $ Zhp= &2 2. Z(b).

Note: In deep learning, we need accuracy early on, not
asymptotically




,7(5%$7,9( GENERALIZED LANCZOS
62/9(56 TRUST-REGION (GLTR) METHOD

@ Starts where Steihaug-Toint stops

@ Searches for boundary solution in span of Lanczos vectors
© Subspaces are nested

© Updates are not recursive

© Uses Moré and Sorensen on tri-diagonal system:

V= T;KBMEV2+ 3V hy st,y( $

@ To obtain the direction h-we need all Lanczos vectors
v
=1L .-y [ab .-y [amw2,--- [d

Ve

@ Storage cost: F Mk is matrix multiplies, Ms dimension of ;.




,7(5%$7,9( IDEAL ITERATIVE SOLVER FOR DL
62/9(56 (MARTENS 2012)

@ Accuracy controlled by solver not problem geometry
© Recursive updates, low overhead

@ Warm-starts, = "

© Preconditioner not tied to elliptic norm/matrix shift

&= >+ 1 Awhere A& S

Additionally want:
@ Descent direction guaranteed: d}# {r)<o0
@ Naturally reduces to CG on Newton’s method




/,1( 6($5&+ ADAPTING CG TO NEGATIVE
0(7+2'" CURVATURE
@ Generate { b,..., T3 such that

M>T=0if B D

© Recursively obtain approximate solution bz, as

(CERE

"p= GKBM(B+" T, if > > 0
ClTe= K G Z(er i TS R< O

' Here Z(h= B+ %5‘>b




/,1( 6($5&+

0(7+2" MODIFYING CG




/,1( 6($5&+ EARLY MODIFICATIONS FOR
0(7+2" NEWTON'S METHOD

Set €= 0|l | 0" where >= ol oMand solve:

S &
Then
b:Z&pE
7TKH SUREOHP
He kB
Ag& 0, Pg b

Singular vectors optimized before directions of greatest
negative curvature.




/,1( 6($5&+ RECENT MODIFICATIONS FOR
0(7+2" NEWTON'S METHOD

Set &= of]! |+ %Mo" where >= ol o"and solve:
b &;

Then

b:z:|I$+O/ApB$‘ gi< o,

&RPSDUH WR WUXVW UHJLRQ VROXWLRQ

M
& ;i .
b=ZIB+(yAp3$ g < 0.

where %> | 3
Emphasis on pscorresponding to K B|Mgversus K B!M




/,1( 6($58&+ MODIFIED CG OBSERVATIONS (ZHOU
0(7+2' 2009)

@ Class of modifications that avoid restarts:
8= >+ o

where "g= >hk+ ;. (O’Leary 1982, Nash 1984)

@ Choose %:so that
%
TTe

(1

@ Can then show trust-region strength convergence
@ No need to store { | %= 0}
@ Works seamlessly in Levenberg-Marquardt framework




/,1( 6($5&+

0(7+2" MNIST WITH 784-400-150-10 NETWORK
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/,1( 6($5&+

0(7+2" MNIST WITH 784-400-150-10 NETWORK
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f1( 06 ((7$+5§‘,+ MNIST WITH 784-400-150-10 NETWORK
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f1( 06 ((7$+5§‘,+ MNIST WITH 784-400-150-10 NETWORK
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/,1( 6($5&+

0(7+2" MNIST WITH 784-400-150-10 NETWORK
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75867 5(*,21 SUCCESSIVE SUBSPACE METHODS
0(7+2' (SSM)

@ Starts where the Steihaug-Toint (ST) method stops
@ Small overhead compared to CG after ST point
@ Use evolving small dimensional subspaces

{q1, q2,...} where qpg' RMF, H 4.

@ Uses Moré and Sorensen on

KBMEBKBO ")+ Sria">am
!qu( $F

@ Use LAPACK to solve
KBMBKB&A ">q)x
X
, dx2=1




75867 5(*,21

0(7+2" FUNDAMENTAL SSM THEOREM

Theorem (Convergence Hager)

6XSSRVHDW HDFK LWHUDWLRQ

bT (M >k+ ;, p)/ bT (45

" . glg>p
= K
P p

WKHQb, WKH JOREDO WUXVW UHJLRQ VXES!I

ZKHUH

Approximating pon the fly typically more than sufficient
Implementations: (Hager 2001), (G. 2005), (Erway, Gill, G.
2007), (Erway, Gill 2008)

6Sas | B



75867 5(*,21

0(7+2" CONCLUSION

Trust-region line-search methods suggested that:
@ Accuracy controlled by solver not problem geometry
© Recursive updates, low overhead
© Wwarm-starts, = "

© Preconditioner not tied to elliptic norm/matrix shift

&= >+ 1 Awhere A S

© Descent direction guaranteed: t,ﬂ# (n<o
© Naturally reduces to CG on Newton’s method




75867 5(*,21

0(7+2" FUTURE WORK

@ Numerical results for SSM method class

@ Mini-batching

@ Hybrids: only need second-order for initial iterations

@ New class of algorithms for “symmetric linear” functions:
rox(r): M Mdoes not always behave like a matrix
(Y& V(). &
' >(r)= >+ MQBb2
' Not all book-keeping tricks may be applicable
' MCG-LS may have advantage over SSM-TR
' Isitabug?
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