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@ Fitting most machine learning models involves optimization.
@ Most common algorithm is gradient descent (GD) and variants:
e Stochastic gradient, quasi-Newton, coordinate descent, and so on.

@ Standard global convergence rate result for GD:
e If f is strongly-convex (SC) then GD has linear convergence.
@ Error on iteration t is O(p?).

@ But even simple models are often not strongly-convex.

e Least squares, logistic regression, etc.

@ This talk: how much can we relax strong-convexity?
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Polyak-tojasiewicz (PL) Inequality

@ Polyak [1963] showed linear convergence of GD assuming

1 *
SIVI@IP = n(f @) - ),
that gradient grows as quadratic function of sub-optimality.
@ Holds for SC problems, but also problems of the form

f(z) = g(Ax), for strongly-convex g.

@ Includes least squares, logistic regression (on compact set), etc.
@ A special case of the tojasiewicz’ inequality [1963].
o We'll call this the Polyak-tojasiewicz (PL) inequality.
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Linear Convergence of GD under the PL Inequality

@ Consider the basic unconstrained smooth optimization,
argmin f(z),
z€ERY

where f satisfies the PL inequality and V f is Lipschitz continuous,
L
Fly) < fl2) +(Vf(z).y —2) + S lly = |,
@ Applying GD with a constant step-size of 1/L,

1
Tht1 = Tk — va(ka

we have
L
flensr) < flaoe) +(VF(@e), tr — 2i) + S llzne = x?
1
= f(zx) — ﬁ\lvf(ancll2
< flaw) = Bl @) - £,
@ Subtracting f* and applying recursively gives global linear rate,

) -1 < (1= 1r”) - 1)
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@ Proof is simple (simpler than than with SC).
@ Does not require uniqueness of solution (unlike SC).

@ Does not imply convexity (unlike SC).
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@ How does PL inequality [1963] relate to more recent conditions?

e EB: error bounds [Luo and Tseng, 1993].
e QG: quadratic growth [Anitescu, 2000]

@ QG plus convexity is “optimal strong convexity” [Liu & Wright, 2015].

o ESC: essential strong convexity [Liu et al., 2013].
e RSI: restricted secant inequality [Zhang & Yin, 2013].

@ RSI plus convexity is “restricted strong convexity”.
e WSC: weak strong convexity [Necoara et al., 2015].
@ Name is also sometimes used for QG plus convexity.

@ Proofs are more complicated under all these conditions.

@ Are they more general?
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Relationships Between Conditions

For a function f with a Lipschitz-continuous gradient, we have
(SC) — (ESC) —» (WSC) — (RSI) —» (EB)— (PL),

and (RSI) — (QG). If we further have that f is convex then

(RSI) = (QG)— (PL).

@ For convex functions PL covers all cases.
e Don’t need the other conditions.

@ For non-convex functions PL and QG are weakest.
e But QG allows sub-optimal local minima.

@ PL is most general that allows linear rate to global optimum.
e Though may be other relations like PL — EB and PL — QG.
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e For smooth f, invexity <> all stationary points are global optimum.

@ Example of invex but non-convex function satisfying PL:
f(z) = 2* 4 3sin?(x).

10 Plot of x~2 + 3*sin(x)"~2

@ Maybe “strong invexity” is a better name?
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PL Inequality and Non-Convex Functions

@ Many important models don’t satisfy invexity.
@ For these problems we often divide analysis into two phases:

e Global convergence: iterations needed to get “close” to minimizer.
e Local convergence: how fast does it converge near the minimizer.

@ Usually, local convergence assumes SC near minimizer.
e If we assume PL, local convergence phase may be much earlier.

10 Plot of x*2 + 3*sin(x)"~2
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Convergence of Huge-Scale Methods

@ For large datasets, we typically don’t use GD.
e But the PL inequality can be used to analyze other algorithms.
@ We'll use PL for coordinate descent and stochastic gradient.

o Garber & Hazan [2015] consider Frank-Wolfe.
o Reddi et al. [2016] consider other stochastic algorithms.
e In Karimi et al. [2016] we consider sign-based gradient methods.
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Random and Greedy Coordinate Descent

@ For randomized coordinate descent under PL we have

k
Elf(en) - 17 < (1- 51 ) [fteo) - 1)

where L. is coordinate-wise Lipschitz constant of V f.
@ Faster than GD rate if iterations are d times cheaper.

@ For greedy coordinate descent under PL we have faster rate

k
flan) = £ (1= 1) = £
where p; is the PL constant in the L,-norm,
IVF(@))% > 2u(f(x) = ).

@ Gives rate for some boosting variants [Meir and Ratsch, 2003].
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Stochastic Gradient Methods

@ Stochastic gradient (SG) methods apply to general problem
argmin f(z) = E[fi(z)],
r€R4

and we usually focus on the special case of a finite sum
1 n
f@) = =3 filw).
@ SG methods use the iteration

Tyl = T — akvfik ($k);

where V f;, is an unbiased gradient approximation.
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Stochastic Gradient Methods

With oy, = %2(,’2711)2 the SG method satisfies

Lo?

Elf(es) ~ '] < 5y

while with «;, set to constant o we have
Lo2a

dp -

Elf(zx) = £*] < (1 = 2u0)*[f(x0) — f*] +

@ O(1/k) rate without strong-convexity (or even convexity).
@ Fast reduction of sub-optimality under small constant step size.

@ Our work and Reddi et al. [2016] consider finite sum case:

e Analyze stochastic variance-reduced gradient (SVRG) method.
e Obtain linear convergence rates.
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PL Generalizations for Non-Smooth Problems

@ What can we say about non-smooth problems?

o Well-known generalization of PL is the KL inequality.
@ Attach and Bolte [2009] show linear rate for proximal-point.
@ But proximal-gradient methods are more relevant for ML.

e KL inequality has been used to show local rate for this method.

@ We propose different PL generalization giving simple global rate.
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Proximal-PL Inequality

@ Proximal-gradient methods apply to the problem

argmin F(z) = f(x) + g(x),

z€ERd
where V f is L-Lipschitz but ¢ may be non-smooth.
@ We say that F satisfies the proximal-PL inequality if
Dy(z, L) > 2u(F(z) - F*),
where
Dy(w, @) = —2amin {(Vf(z),y = 2) +ally — 2ll* + 9(v) — g(2)} .
@ Condition is ugly but it yields extremely-simple proof:
F(art1) = flors1) + g(zp) + g(zr1) — glzn)
< F@) + (V@) mans =20 + £ llenss = el +g(zie) - o(an)
%'Dg(zk, L)
< o) = 2P - Pl = Pah) - P < (12 4) 6 - 7

< F(zk) —
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Relevant Problems for Proximal-PL

@ We also analyze proximal coordinate descent under PL.
e Reddi et al. [2016] analyze proximal-SVRG and proximal-SAGA.
@ Proximal PL is satisfied when:
e fis SC.
o f satisfies PL and g is constant.
e [ = h(Az) for SC g and is indicator of convex set.
e Fis convex and satisfies QG.
@ Includes dual support vector machine (SVM) problem:
e Implies linear rate of SDCA for SVMs.
@ Includes L1-regularized least squares (LASSO) problem:
@ No need for RIP, homotopy, modified restricted strong convexity,. . .
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@ In 1963, Polyak proposed a condition for linear rate of GD.
e Gives trivial proof and is weaker than more recent conditions.

@ We can use the inequality to analyze huge-scale methods:
e Coordinate descent, stochastic gradient, SVRG, etc.

@ We give proximal-gradient generalization:
e Standard algorithms have linear rate for SVM and LASSO.



