Approaches to Solving Semantic Segmentation

Sergey Rusakov

Lehigh University

September 25, 2019

(a) Image classification

(c) Semantic segmentation

(b) Object localization

(d) Instance segmentation

Optimisation opportunities

$$\mathcal{X} \xrightarrow{f} \mathcal{Y}$$

- \mathcal{X} is a set of three dimensional matrices, $\mathcal{X} \subseteq [0,1]^{n \times m \times 3}$
- \mathcal{Y} is a set of three dimensional matrices, $\mathcal{Y} \subseteq \mathcal{C}^{n \times m}$, where \mathcal{C} is the set, that can be tailored to the specific needs, but generally somehow represents a collection of classes
 - $ightharpoonup C = \{1, 2, ..., C\}$, where C is the number of classes
 - ▶ $C = \{e_1, e_2, ..., e_C\}$, where C is the number of classes and e_i is a one-hot vector with 1 at position i
 - $C = \{e_1, e_2, ..., e_C\} \cup [0, 1]^3$

Optimisation usually consists of variants of minimizing sum of pixel-wise cross entropy with your favorite first order method

$$\frac{1}{N} \min_{w} \sum_{i=1}^{N} \sum_{p} CE_{p}(\hat{f}_{w}(x_{i}), y_{i})$$

where p goes through all pixels

Obvious optimisation opportunities

Instead of blindly playing with architectures, one can play with regularization

- Border smoothness
- Number of connected regions
- Any possible intuition about the desired result

Research horizons

Data from 2017 survey [2]

Name and Reference	Purpose	Year	Classes	Data	Resolution	Sequence	Synthetic/Real	Samples (training)	Samples (validation)	Samples (test)
PASCAL VOC 2012 Segmentation [27]	Generic	2012	21	2D	Variable	X	R	1464	1449	Private
PASCAL-Context [28]	Generic	2014	540 (59)	2D	Variable	×	R	10103	N/A	9637
PASCAL-Part [29]	Generic-Part	2014	20	2D	Variable	X	R	10103	N/A	9637
SBD [30]	Generic	2011	21	2D	Variable	X	R	8498	2857	N/A
Microsoft COCO [31]	Generic	2014	+80	2D	Variable	X	R	82783	40504	81434
SYNTHIA [32]	Urban (Driving)	2016	11	2D	960×720	X	S	13407	N/A	N/A
Cityscapes (fine) [33]	Urban	2015	30 (8)	2D	2048 × 1024	/	R	2975	500	1525
Cityscapes (coarse) [33]	Urban	2015	30 (8)	2D	2048 × 1024	/	R	22973	500	N/A
CamVid [34]	Urban (Driving)	2009	32	2D	960×720	/	R	701	N/A	N/A
CamVid-Sturgess [35]	Urban (Driving)	2009	11	2D	960 × 720	/	R	367	100	233
KITTI-Layout [36] [37]	Urban/Driving	2012	3	2D	Variable	X	R	323	N/A	N/A
KITTI-Ros [38]	Urban/Driving	2015	11	2D	Variable	×	R	170	N/A	46
KITTI-Zhang [39]	Urban/Driving	2015	10	2D/3D	1226×370	X	R	140	N/A	112
Stanford background [40]	Outdoor	2009	8	2D	320×240	×	R	725	N/A	N/A
SiftFlow [41]	Outdoor	2011	33	2D	256×256	×	R	2688	N/A	N/A
Youtube-Objects-Jain [42]	Objects	2014	10	2D	480 × 360	/	R	10167	N/A	N/A
Adobe's Portrait Segmentation [26]	Portrait	2016	2	2D	600 × 800	X	R	1500	300	N/A
MINC [43]	Materials	2015	23	2D	Variable	X	R	7061	2500	5000
DAVIS [44] [45]	Generic	2016	4	2D	480p	/	R	4219	2023	2180
NYUDv2 [46]	Indoor	2012	40	2.5D	480 × 640	×	R	795	654	N/A
SUN3D [47]	Indoor	2013	-	2.5D	640 × 480	/	R	19640	N/A	N/A
SUNRGBD [48]	Indoor	2015	37	2.5D	Variable	X	R	2666	2619	5050
RGB-D Object Dataset [49]	Household objects	2011	51	2.5D	640×480	/	R	207920	N/A	N/A
ShapeNet Part [50]	Object/Part	2016	16/50	3D	N/A	×	S	31,963	N/A	N/A
Stanford 2D-3D-S [51]	Indoor	2017	13	2D/2.5D/3D	1080×1080	/	R	70469	N/A	N/A
3D Mesh [52]	Object/Part	2009	19	3D	N/A	×	S	380	N/A	N/A
Sydney Urban Objects Dataset [53]	Urban (Objects)	2013	26	3D	N/A	×	R	41	N/A	N/A
Large-Scale Point Cloud Classification Benchmark [54]	Urban/Nature	2016	8	3D	N/A	X	R	15	N/A	15

Research horizons

		Targets									
Name and Reference	Architecture	Accuracy	Efficiency	Training	Instance	Sequences	Multi-modal	3D	Source Code	Contribution(s)	
Fully Convolutional Network [65]	VGG-16(FCN)	*	*	*	×	×	×	×	/	Forerunner	
SegNet [66]	VGG-16 + Decoder	***	**	*	×	×	×	×	/	Encoder-decoder	
Bayesian SegNet [67]	SegNet	***	*	*	×	×	×	×	/	Uncertainty modeling	
DeepLab [68] [69]	VGG-16/ResNet-101	***	*	*	×	×	×	×	/	Standalone CRF, atrous convolutions	
MINC-CNN [43]	GoogLeNet(FCN)	*	*	*	×	×	×	×	/	Patchwise CNN, Standalone CRF	
CRFasRNN [70]	FCN-8s	*	**	***	×	×	×	X	/	CRF reformulated as RNN	
Dilation [71]	VGG-16	***	*	*	×	×	×	X	/	Dilated convolutions	
ENet [72]	ENet bottleneck	**	***	*	×	×	×	×	/	Bottleneck module for efficiency	
Multi-scale-CNN-Raj [73]	VGG-16(FCN)	***	*	*	×	×	×	X	×	Multi-scale architecture	
Multi-scale-CNN-Eigen [74]	Custom	***	*	*	×	×	×	X	/	Multi-scale sequential refinement	
Multi-scale-CNN-Roy [75]	Multi-scale-CNN-Eigen	***	*	*	×	×	**	×	×	Multi-scale coarse-to-fine refinement	
Multi-scale-CNN-Bian [76]	FCN	**	*	**	×	×	×	×	×	Independently trained multi-scale FCNs	
ParseNet [77]	VGG-16	***	*	*	×	×	×	×	/	Global context feature fusion	
ReSeg [78]	VGG-16 + ReNet	**	*	*	×	×	×	X	/	Extension of ReNet to semantic segmentation	
LSTM-CF [79]	Fast R-CNN + DeepMask	***	*	*	×	×	×	X	/	Fusion of contextual information from multiple sources	
2D-LSTM [80]	MDRNN	**	**	*	×	×	×	×	×	Image context modelling	
rCNN [81]	MDRNN	***	**	*	×	×	×	X	/	Different input sizes, image context	
DAG-RNN [82]	Elman network	***	*	*	×	×	×	X	/	Graph image structure for context modelling	
SDS [10]	R-CNN + Box CNN	***	*	*	**	×	×	×	/	Simultaneous detection and segmentation	
DeepMask [83]	VGG-A	***	*	*	**	×	×	×	/	Proposals generation for segmentation	
SharpMask [84]	DeepMask	***	*	*	***	×	×	×	/	Top-down refinement module	
MultiPathNet [85]	Fast R-CNN + DeepMask	***	*	*	***	×	×	×	/	Multi path information flow through network	
Huang-3DCNN [86]	Own 3DCNN	*	*	*	×	×	×	***	×	3DCNN for voxelized point clouds	
PointNet [87]	Own MLP-based	**	*	*	×	×	×	***	/	Segmentation of unordered point sets	
Clockwork Convnet [88]	FCN	**	**	*	×	***	×	×	/	Clockwork scheduling for sequences	
3DCNN-Zhang	Own 3DCNN	**	*	*	×	***	×	X	/	3D convolutions and graph cut for sequences	
End2End Vox2Vox [89]	C3D	**	*	*	×	***	×	×	×	3D convolutions/deconvolutions for sequences	

Research horizons

Notable detail - architectures are often modular, significant parts are just borrowed from classification context

- Is it worth to consider architecture search over vast blocks instead of individual weights/layers?
- Focus computational resources on connecting structures
- Even simple automatisation of exhaustive search over large architecture blocks can be beneficial, considering the plethora of existing results (more of a commercial opportunity; TensorFlow might already include the functionality)

SegNet [1], 2016

- Specifically for pixel-wise segmentation, initial intended use for road/roadside segmentation
- Novel encoder-decoder architecture (at the time)
- Very simple method overall

SegNet, 2016

SegNet, 2016

- Encoder is VGG16 without dense layers
- Decoder uses saved indices from max-pooling with subsequent convolutions to restore the original size
- Removal of dense layers allows to literally use the CE pixel sum objective without resorting to training on separate regions
- Modular structure of the network allows for a more detailed analysis of decoder structure

SegNet, 2016

RefineNet [3], 2017

- SegNet, although attempting to restore image information during decoding, still loses some of it
- As mentioned, one way to try and improve the quality of the segmentation regions is maybe an addition of informed regularisation
- Another way is to make an informed choice of the architecture, trying to save low/mid/high level feature information along all levels of processing

- ResNet convolutional architecture is motivated by lowering computational resources requirements
- Dilated convolution saves the resolution of an image, but still requires storage of large amounts of filter application results
- We want the benefit of both without disadvatages of any

CANet [4], 2019

- Having architecture, that is empirically proven to be good is still not enough
- Sometimes the problem comes from class under-representation in data
- This can be argued to be an even more serious problem, than searching for architectures

- lacktriangle We will modify the initial formulation through change in ${\mathcal X}$
- Now \mathcal{X} is a set of **triplets** of three dimensional matrices, (x_T, x_S, B_S) , where we want to obtain a segmentation of image x_T and x_S serves as "support" image, with B_S being its binary segmentation mask
- Value of the support image comes from the fact, that it can be taken from underrepresented class and, combined with input, still achieve good segmentation result on barely seen classes
- For \mathcal{Y} , we are only concerned with segmentation of a single object, so just a binary mask

- Aside from the change in the problem formulation, significant parts of the architecture are borrowed
- ASPP is a module from DeepLabV3, which serves the same purpose as structure of RefineNet
- Only further supports the idea about "large scale" architecture search

- Paper, again, deals with the issue of insufficient data for training
- Considered case is video with sparsely annotated frames
- Proposed solution is to use video prediction tools to simultaneously predict frames and labels

- Obvious idea use existing frame prediction methods to predict future frames and apply the result on labels
- Particular implementation predicts (u, v) translation of the pixel in the frame and then applies this translation to corresponding label pixel
- Since we have access to all frames, we then pair known frames and label prediction
- Approach encounters some problems

- Solution pair predicted labels with predicted frames
- Predicted frames might be incorrect, but labeling will be more in line with them, which is our goal, when augmenting a data set
- We can even condition our predictive model on future frames, since the only information, that we don't have is label assignment; turns prediction into reconstruction

- Still, if want to construct labels even for several frames into the future, we need to deal with severe artifacts of the prediction model
- Proposed solution instead of maximising a probability of one class for pixels, which are placed on the border between objects, we will maximise the joint probability of labels, corresponding to these classes
- Surprisingly, paper shows, that this helps, which allows authors to use up to 5 frames into past and future, effectively multiplying the size of the data set by 10

References I

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.

CoRR, abs/1511.00561, 2015.

Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-Martinez, and José García Rodríguez.

A review on deep learning techniques applied to semantic segmentation.

CoRR, abs/1704.06857, 2017.

Guosheng Lin, Anton Milan, Chunhua Shen, and Ian D. Reid. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation.

CoRR, abs/1611.06612, 2016.

References II

Chi Zhang, Guosheng Lin, Fayao Liu, Rui Yao, and Chunhua Shen.

Canet: Class-agnostic segmentation networks with iterative refinement and attentive few-shot learning.

CoRR, abs/1903.02351, 2019.

Yi Zhu, Karan Sapra, Fitsum A. Reda, Kevin J. Shih, Shawn D. Newsam, Andrew Tao, and Bryan Catanzaro. Improving semantic segmentation via video propagation and label relaxation.

CoRR, abs/1812.01593, 2018.