
Online Convex Optimization in the Bandit Setting

Suyun Liu

OptML Group Meeting, Lehigh ISE

October 30, 2019

Presentation Outline

1 Bandit Convex Optimization

2 Multi-Armed Bandit Optimization

3 Stochastic Multi-Armed Bandit Optimization

Suyun Liu, Lehigh University 1/20

Recap: Online Convex Optimization

At each iteration t, the player chooses xt in convex set K.

A convex loss function ft ∈ F : K → R is revealed.

A cost ft(xt) is incurred.

F is a set of bounded functions.

ft is revealed after choosing xt.

ft can be adversarially chosen.

Suyun Liu, Lehigh University Bandit Convex Optimization 2/20

Recap: Online Convex Optimization

Goal: minimize the regret bound

regretT =

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x)

Online Gradient Descent (OGD) (Zinkevich 2003):

xk+1 = ΠK(xk − ηt∇ft(xt))

Regret bound

if ft is convex: O(GD
√
T)

if ft is α-strongly convex: O(G
2

2α (1 + log(T)))

Suyun Liu, Lehigh University Bandit Convex Optimization 3/20

Bandit Convex Optimization

Motivation

In Ad-placement, the search engine can inspect which ads were

clicked through, but cannot know whether different ads would have

been click through or not.

Given a fixed budget, how to allocate resources among the research

projects whose outcome is only partially known at the time of

allocation and may change through time.

Bandit Setting

In OCO, player has access to ∇ft(xt)

In BCO, player only has black-box access to the function value ft(xt).

We only can evaluate each function once.

Suyun Liu, Lehigh University Bandit Convex Optimization 4/20

Bandit Convex Optimization

Motivation

In Ad-placement, the search engine can inspect which ads were

clicked through, but cannot know whether different ads would have

been click through or not.

Given a fixed budget, how to allocate resources among the research

projects whose outcome is only partially known at the time of

allocation and may change through time.

Bandit Setting

In OCO, player has access to ∇ft(xt)

In BCO, player only has black-box access to the function value ft(xt).

We only can evaluate each function once.

Suyun Liu, Lehigh University Bandit Convex Optimization 4/20

Exploration vs Exploitation

Balance between exploiting the gathered information and exploring the
new data.

Figure: Where to eat?(Image source: UC Berkeley AI course slide, lecture 11.)

Suyun Liu, Lehigh University Bandit Convex Optimization 5/20

OGD without a gradient

Question: Can we perform OGD without gradients?

One dim
∇̃f(x) = (f(x+ δ)− f(x− δ))/2δ

d dim

∇̃f(x) ≈ Eu∈∂B[(f(x+ δu)− f(x))u]d/δ

= Eu∈∂B[f(x+ δu)u]d/δ

Note: g̃(x, u) = f(x+ δu)ud/δ

Eu∈∂B[g̃(x, u)] = ∇f̂(x), with f̂(x) = Ev∈B[f(x+ δv)]

Suyun Liu, Lehigh University Bandit Convex Optimization 6/20

OGD without a gradient

Question: Can we perform OGD without gradients?

One dim
∇̃f(x) = (f(x+ δ)− f(x− δ))/2δ

d dim

∇̃f(x) ≈ Eu∈∂B[(f(x+ δu)− f(x))u]d/δ

= Eu∈∂B[f(x+ δu)u]d/δ

Note: g̃(x, u) = f(x+ δu)ud/δ

Eu∈∂B[g̃(x, u)] = ∇f̂(x), with f̂(x) = Ev∈B[f(x+ δv)]

Suyun Liu, Lehigh University Bandit Convex Optimization 6/20

Bandit gradient descent algorithm

Assumption:

only access to ft at one single point xt.

function value is bounded, {ft} : K → [−C,C].

ft can be non-smooth, no bounded gradient assumption.

∃r,R > 0, rB ⊂ K ⊂ RB.

Algorithm (Flaxman et al. 2005)

Let y1 = 0, learning rate η, ξ ∈ (0, 1), δ > 0

for t = 1, . . . , T :

- select ut ∈ ∂B uniformly at random

- xt = yt + δut and receive ft(xt)

- yt+1 = Π(1−ξ)K(yt − ηft(xt)utd/δ)
(yt+1 ∈ (1− ξ)K ensures xt ∈ K for any δ ∈ [0, ξr])

Suyun Liu, Lehigh University Bandit Convex Optimization 7/20

Bandit gradient descent algorithm

Assumption:

only access to ft at one single point xt.

function value is bounded, {ft} : K → [−C,C].

ft can be non-smooth, no bounded gradient assumption.

∃r,R > 0, rB ⊂ K ⊂ RB.

Algorithm (Flaxman et al. 2005)

Let y1 = 0, learning rate η, ξ ∈ (0, 1), δ > 0

for t = 1, . . . , T :

- select ut ∈ ∂B uniformly at random

- xt = yt + δut and receive ft(xt)

- yt+1 = Π(1−ξ)K(yt − ηft(xt)utd/δ)
(yt+1 ∈ (1− ξ)K ensures xt ∈ K for any δ ∈ [0, ξr])

Suyun Liu, Lehigh University Bandit Convex Optimization 7/20

Bandit gradient descent algorithm

Theorem

For sufficient large T with η = R
C
√
T

, the expected regret bound is

E[

T∑
t=1

ft(xt)]−min
x∈K

T∑
t=1

ft(x) ≤ 6T 5/6dC

With additional assumption L-Lipschitz function

E[

T∑
t=1

ft(xt)]−min
x∈K

T∑
t=1

ft(x) ≤ 6T 3/4d(
√
CLR+ C)

Parameters: T > (3Rd2r)2, δ = (rR
2d2

12T)1/3 ≤ ξr, and ξ = (3Rd
2r
√
T

)1/3

Suyun Liu, Lehigh University Bandit Convex Optimization 8/20

Multi-Point Bandit Feedback

Recall

g̃t =
d

δ
ft(ut)ut with ‖g̃t‖ ≤

dC

δ

Multi-point scheme (Agarwal et al. 2010): use two function values to
construct bounded norm gradient estimators for L-Lipschitz continuous
functions.

g̃t =
d

2δ
(ft(xt + δut)− ft(xt − δut))ut with ‖g̃t‖ ≤ Ld

Expected regret bound:

- η = 1√
T
, δ =

log(T)
T and ξ = δ

r : (d2L2 +R2)
√
T + Llog(T)(3 + R

r)

- α-strong convex, ηt = 1
αt , δ =

log(T)
T and ξ = δ

r :

Llog(T)(d
2L
α + R

r + 3).

Suyun Liu, Lehigh University Bandit Convex Optimization 9/20

Multi-Point Bandit Feedback

Recall

g̃t =
d

δ
ft(ut)ut with ‖g̃t‖ ≤

dC

δ

Multi-point scheme (Agarwal et al. 2010): use two function values to
construct bounded norm gradient estimators for L-Lipschitz continuous
functions.

g̃t =
d

2δ
(ft(xt + δut)− ft(xt − δut))ut with ‖g̃t‖ ≤ Ld

Expected regret bound:

- η = 1√
T
, δ =

log(T)
T and ξ = δ

r : (d2L2 +R2)
√
T + Llog(T)(3 + R

r)

- α-strong convex, ηt = 1
αt , δ =

log(T)
T and ξ = δ

r :

Llog(T)(d
2L
α + R

r + 3).

Suyun Liu, Lehigh University Bandit Convex Optimization 9/20

Multi-Point Bandit Feedback

Recall

g̃t =
d

δ
ft(ut)ut with ‖g̃t‖ ≤

dC

δ

Multi-point scheme (Agarwal et al. 2010): use two function values to
construct bounded norm gradient estimators for L-Lipschitz continuous
functions.

g̃t =
d

2δ
(ft(xt + δut)− ft(xt − δut))ut with ‖g̃t‖ ≤ Ld

Expected regret bound:

- η = 1√
T
, δ =

log(T)
T and ξ = δ

r : (d2L2 +R2)
√
T + Llog(T)(3 + R

r)

- α-strong convex, ηt = 1
αt , δ =

log(T)
T and ξ = δ

r :

Llog(T)(d
2L
α + R

r + 3).

Suyun Liu, Lehigh University Bandit Convex Optimization 9/20

Summary on regret bounds

Figure: Known regret bounds in the Full-Info./BCO setting (Hazan and Levy
2014)

Suyun Liu, Lehigh University Bandit Convex Optimization 10/20

Multi-Armed Bandit

Setting

At iteration t, player chooses action it from a set of discrete actions
{1, . . . , n}.
A loss in [0, 1] is independently chosen for each action.

The loss associated with it is revealed.

Various assumptions and constraints.

Example

A gambler pulls one of n slot machines to receive a reward or payoff. Each
arm is configured with fixed unknown reward/payoff probability.

What is the best strategy to achieve highest long-term rewards/lowest
cumulative loss?

Suyun Liu, Lehigh University Multi-Armed Bandit Optimization 11/20

Multi-Armed Bandit

Setting

At iteration t, player chooses action it from a set of discrete actions
{1, . . . , n}.
A loss in [0, 1] is independently chosen for each action.

The loss associated with it is revealed.

Various assumptions and constraints.

Example

A gambler pulls one of n slot machines to receive a reward or payoff. Each
arm is configured with fixed unknown reward/payoff probability.

What is the best strategy to achieve highest long-term rewards/lowest
cumulative loss?

Suyun Liu, Lehigh University Multi-Armed Bandit Optimization 11/20

Multi-Armed Bandit

Exploration vs Exploitation: explore more actions or make the best
decision using the current estimates of the loss distribution.

Algorithms

Simple MAB algorithm

EXP3

Let K = ∆n be an n-dimensional simplex. The linear loss function

ft(xt) = `>t xt =
n∑
i=1

`t(i)xt(i) ∀xt ∈ K

Key: to estimate gradient `t.

Suyun Liu, Lehigh University Multi-Armed Bandit Optimization 12/20

Multi-Armed Bandit

Exploration vs Exploitation: explore more actions or make the best
decision using the current estimates of the loss distribution.

Algorithms

Simple MAB algorithm

EXP3

Let K = ∆n be an n-dimensional simplex. The linear loss function

ft(xt) = `>t xt =
n∑
i=1

`t(i)xt(i) ∀xt ∈ K

Key: to estimate gradient `t.

Suyun Liu, Lehigh University Multi-Armed Bandit Optimization 12/20

Simple MAB algorithm

Separating exploration and exploitation steps (Hazan 2016)

Algorithm 1 Simple MAB algorithm

1: ε ∈ [0, 1], learning rate η > 0.
2: for t = 1, . . . , T do
3: bt ∼ Bernoulli(ε).
4: if bt = 1 then
5: Choose it uniformly at random and receive `t(it)
6: Let

ˆ̀
t(i) =

{
n/ε`t(it), for i = it
0, OW

7: xt+1 = ΠK(xt − η ˆ̀
t)

8: else
9: Play it ∼ xt

10: ˆ̀
t = 0, xt+1 = xt.

Suyun Liu, Lehigh University Multi-Armed Bandit Optimization 13/20

Simple MAB algorithm

E[ˆ̀t] = `t and E[f̂t(xt)] = E[ˆ̀>t xt] = ft(xt)

Expected regret bound when ε = n2/3T−1/3

E[

T∑
t=1

`t(it)]−min
i

T∑
t=1

`t(i) ≤ O(T 2/3n2/3)

Suyun Liu, Lehigh University Multi-Armed Bandit Optimization 14/20

EXP3

Combining exploration and exploitation steps (Auer et al. 2002b).

Algorithm 2 EXP3 - simple version

1: Choose ε > 0, x1 = [1/n, . . . , 1/n].
2: for t = 1, . . . , T do
3: Choose it ∼ xt and receive `t(it).
4: Let

ˆ̀
t(i) =

{
`t(it)
xt(it)

, for i = it

0, OW

5: Update yt+1(i) = xt(i)e
−εˆ̀t(i), xt+1 = yt+1

‖yt+1‖1

E[ˆ̀t] = `t

Choose ε =

√
logn
Tn , expected regret bound O(

√
Tnlogn)

Suyun Liu, Lehigh University Multi-Armed Bandit Optimization 15/20

Stochastic Multi-armed Bandit

Setting

Player chooses it ∈ {1, . . . , n}.
Each action it has a reward rit from a (fixed) probability distribution
Pit with mean µit .

The reward revealed to the player is a sample taken from Pit .

A sub case: Bernoulli Multi-armed Bandit with Pi = Bernoulli(pi),
ri ∈ {0, 1}.

Suyun Liu, Lehigh University Multi-Armed Bandit Optimization 16/20

General Bernoulli Multi-armed Bandit Algorithm

Algorithm 3 Bernoulli Multi-armed Bandit

1: Set N = Q = S = F = 0 ∈ Rn.

2: for t = 1, . . . , T do

3: it = PickArm(Q,N, S, F)

4: rt = BernoulliReward(it)

5: N [it] = N [it] + 1 (number of times arm i is pulled)

6: Q[it] = Q[it] + (rt−Q[it])
N [it]

(empirical average reward of pulling i)

7: S[it] = S[it] + rt (number of times a reward of 1 was received)

8: F [it] = F [it] + (1− rt)(number of times a reward of 0 was received)

Suyun Liu, Lehigh University Multi-Armed Bandit Optimization 17/20

Arm Seclection Algorithms for Stochastic MAB

Random selection

ε-Greedy algorithm

Boltzmann Exploration

Upper Confidence Bounds

Bayesian UCB

Thompson Sampling

. . .

Suyun Liu, Lehigh University Multi-Armed Bandit Optimization 18/20

Upper Confidence Bound Arm selection

Using one sided Hoeffding’s inequality

P(µi ≥ Q[i] + ε) ≤ e−2N [i]ε2

UCB strategy

i = argmaxi(Q[i] + ε), where ε =

√
2log(t)

N [i]

Expected regret bound: O(log(T)) (Auer et al. 2002a)

Suyun Liu, Lehigh University Multi-Armed Bandit Optimization 19/20

Thompson Sampling Strategy

Beta distribution Beta(α, β)

f(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

Thompson Sampling algorithm:

- Initialize pi ∼ Beta(1, 1), ∀i
- for t = 1, . . . , T

Q[i] ∼ Beta(S[i] + 1, F [i] + 1), ∀i

it = argmaxi{Q[i]}

Expected regret bound: O(log(T)) (Agrawal and Goyal 2012)

Generalize to r̃ ∈ [0, 1]: after observing reward r̃t, perform

rt ∼ BernoulliReward(r̃t)

Suyun Liu, Lehigh University Multi-Armed Bandit Optimization 20/20

Thompson Sampling Strategy

Beta distribution Beta(α, β)

f(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

Thompson Sampling algorithm:

- Initialize pi ∼ Beta(1, 1), ∀i
- for t = 1, . . . , T

Q[i] ∼ Beta(S[i] + 1, F [i] + 1), ∀i

it = argmaxi{Q[i]}

Expected regret bound: O(log(T)) (Agrawal and Goyal 2012)

Generalize to r̃ ∈ [0, 1]: after observing reward r̃t, perform

rt ∼ BernoulliReward(r̃t)

Suyun Liu, Lehigh University Multi-Armed Bandit Optimization 20/20

References

Agarwal, A., Dekel, O., and Xiao, L. (2010). Optimal algorithms for online convex optimization
with multi-point bandit feedback. In COLT, pages 28–40. Citeseer.

Agrawal, S. and Goyal, N. (2012). Analysis of thompson sampling for the multi-armed bandit
problem. In Conference on Learning Theory, volume 23, pages 1–26.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002a). Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47:235–256.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. (2002b). The nonstochastic
multiarmed bandit problem. SIAM journal on computing, 32:48–77.

Flaxman, A. D., Kalai, A. T., Kalai, A. T., and McMahan, H. B. (2005). Online convex
optimization in the bandit setting: gradient descent without a gradient. In Proceedings of
the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 385–394. Society
for Industrial and Applied Mathematics.

Hazan, E. (2016). Introduction to online convex optimization. Foundations and Trends® in
Optimization, 2:157–325.

Hazan, E. and Levy, K. (2014). Bandit convex optimization: Towards tight bounds. In Advances
in Neural Information Processing Systems, pages 784–792.

Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent.
In Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages
928–936.

Suyun Liu, Lehigh University Multi-Armed Bandit Optimization 20/20

	Bandit Convex Optimization
	Multi-Armed Bandit Optimization
	Stochastic Multi-Armed Bandit Optimization
	References

