Introduction to Online Convex Optimization

Lili Song ISE, Lehigh University

optML Octor 2, 2019

Lili Song 1/33

Outline

Online Learning

2 Online Convex Optimization (OCO)

3 Basic definitions, algorithms and convergence results

4 SVM

Lili Song 2/33

What is online Learning?

Lili Song Online Learning 3/33

What is online Learning?

Online learning is the process of answering a sequence of questions given (maybe partial) knowledge of the correct answers to previous questions and possibly additional available information.

Lili Song Online Learning 3/

What is online Learning?

Online learning is the process of answering a sequence of questions given (maybe partial) knowledge of the correct answers to previous questions and possibly additional available information.

Online Learning

 $\begin{array}{l} \textbf{for} \ \ \mathbf{t}{=}1{,}2{,}\dots \\ \text{receive question} \ \ \mathbf{x}_t \in \mathcal{X} \\ \text{predict} \ \ p_t \in D \\ \text{receive true answer} \ \ y_t \in \mathcal{Y} \\ \text{suffer loss} \ \ \ell\left(p_t,y_t\right) \end{array}$

Lili Song Online Learning 3/3

Goal: minimize the cumulative loss suffered along its run

Lili Song Online Learning 4/3

Goal: minimize the cumulative loss suffered along its run

Process: deduce information from previous rounds to improve its predictions on present and future questions

Lili Song Online Learning 4/3

Goal: minimize the cumulative loss suffered along its run

Process: deduce information from previous rounds to improve its predictions on present and future questions

Remark: learning is hopeless if there is no correlation between past and present rounds

Lili Song Online Learning 4/3

Example (Online Binary Prediction Game)

Email spam classification:

the player observes some features of an email and makes a binary prediction, either spam or not spam.

for each round $t = 1, \ldots, T$

- ullet observe a feature vector $x_t \in \mathbb{R}^n$ of an instance
- make a binary prediction $\hat{y}_t \in \{+1, -1\}$. +1, -1 represent "spam" and "not spam"
- observe feedback $y_t \in \{+1, -1\}$
- ullet A loss is incurred $\ell_t = \mathbb{1}_{\hat{y}_t
 eq y_t}$

After T rounds, the cumulative loss is $\sum_{t=1}^{T} \ell_t$.

Lili Song Online Learning 5/

Example (Predicting whether it is going to rain tomorrow:)

day t, the question x_t can be encoded as a vector of meteorological measurements

the learner should predict if it's going to rain tomorrow output a prediction

in
$$[0,1]$$
, $D \neq \mathcal{Y}$.

loss function: $\ell(p_t, y_t) = |p_t - y_t|$

which can be interpreted as the probability to err if predicting that it's going to rain with probability p_t

Lili Song Online Learning 6/3

Example (Online Binary Linear Predictor with Hinge Loss:)

The hypothesis $h_w: \mathbb{R}^n \to \{+1, -1\}$

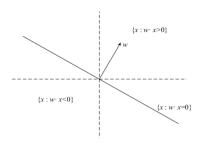
$$h_w(x) = \operatorname{sign}(w \cdot x) = \begin{cases} +1, & \text{if } w \cdot x > 0 \\ -1, & \text{if } w \cdot x < 0 \end{cases}$$

is called binary linear predictor. The hypothesis class ${\cal H}$

$$\mathcal{H} = \{ h_w(x) : w \in \mathbb{R}^n, ||w||_2 \le 1 \},$$

is the class of binary linear predictors.

Lili Song Online Learning 7/33



 ${\bf Figure}~{\bf 1} \hbox{: Hyperplane and halfspaces}$

Geometrically, all vectors that are perpendicular to w (i.e. zero inner product) forms a hyperplane $\{x:w\cdot x=0\}$, shown in Figure 1. The data may fall into one of halfspaces $\{x:w\cdot x<0\}$ and $\{x:w\cdot x>0\}$. $|w\cdot x|$ can be interpreted as the prediction **confidence**.

Hinge Loss Function

The hinge loss function is defined as

$$\ell(w; (x_t, y_t)) = \max\{0, 1 - y_t w \cdot x_t\}.$$

Lili Song Online Learning 9/3

Hinge Loss Function

The hinge loss function is defined as

$$\ell(w; (x_t, y_t)) = \max\{0, 1 - y_t w \cdot x_t\}.$$

As shown in Figure 2,

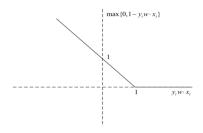


Figure 2: Hinge loss function

Lili Song Online Learning 9/33

Hinge Loss Function

Hinge loss function imposes penalty for wrong prediction $(y_t w \cdot x_t < 0)$ and right prediction with small confidence $(0 \le y_t w \cdot xt \le 1)$.

For $t = 1, \dots, T$,

- Player chooses $w_t \in \mathcal{W}$, where $\mathcal{W} = \{w \in \mathbb{R}^n : ||w||_2 \le 1\}$, a unit ball in \mathbb{R}^n
- Environment chooses (x_t, y_t)
- Player incurs a loss $\ell_t(w_t;(x_t,y_t)) = \max\{0,1-y_tw\cdot x_t\}$
- Player receives feedback (x_t, y_t) .

Lili Song Online Learning 10/33

Comparison Between Online Learning and Statistical Learning

Figure: Comparison Between Online Learning and Statistical Learning

	Online learning (OL)	Statistical learning (SL)			
	Both define hypothesis space/class of predictors (in each round of a game				
Similarities	in OL while in training procedure of SL).				
	Both define a loss function to evaluate the prediction performance, and small				
	loss is preferred.				
	Instances and labels				
Differences	learning in each round of game, no dis-	first train a model, then test it			
	tinction between training and testing				
	adversary case	statistical assumption			

li Song Online Learning 11/

Online Convex Optimization (OCO)

In online convex optimization, an online player iteratively makes decisions. After committing to a decision, the decision maker suffers a loss. The losses can be adversarially chosen, and even depend on the action taken by the decision maker.

Applications:

Online advertisement placement web ranking spam filtering online shortest paths portfolio selection recommender systems

Necessary Restrictions:

• The losses determined by an adversary should not be unbounded.

Necessary Restrictions:

• The losses determined by an adversary should not be unbounded.

Otherwise the adversary could keep decreasing the scale of the loss at each step.

Necessary Restrictions:

- The losses determined by an adversary should not be unbounded.
 Otherwise the adversary could keep decreasing the scale of the loss at each step.
- The decision set must be bounded and/or structured.

Necessary Restrictions:

- The losses determined by an adversary should not be unbounded.
 Otherwise the adversary could keep decreasing the scale of the loss at each step.
- The decision set must be bounded and/or structured.
 - Otherwise, an adversary can assign high loss to all the strategies chosen by the player indefinitely, while setting apart some strategies with zero loss. This precludes any meaningful performance metric.

OCO protocol

The protocol of OCO is as follows:

Let T denote the total number of game iterations, for $t = 1, \dots, T$,

- Player chooses $w_t \in \mathcal{W}$, where \mathcal{W} is a convex set in \mathbb{R}^n
- Environment chooses a convex loss function $f_t: \mathcal{W} \to \mathbb{R}$
- Player incurs a loss $\ell_t = f_t(w_t) = f_t(w_t; (x_t, y_t))$
- Player receives feedback f_t .

OCO Examples

Example (Prediction from expert advice)

The decision maker has to choose among the advice of n given experts. i.e., the n-dimensional simplex $\mathcal{X} = \{x \in \mathbb{R}^n, \sum_i x_i = 1, x_i \geq 0\}$.

 $g_t(i)$: the cost of the i'th expert at iteration t

 g_t : the cost vector of all n experts

The cost function is given by the linear function $f_t(w) = g_t^T x$.

OCO Examples

Example (Online regression)

 $\mathcal{X} = \mathbb{R}^n$ corresponds to a set of measurements

$$\mathcal{Y} = D = \mathbb{R}$$

Consider the problem of estimating the fetal weight based on ultrasound measurements of abdominal circumference and femur length.

For each $x \in \mathcal{X} = \mathbb{R}^2$, the goal is to predict the fetal weight.

Common loss functions for regression problems are:

the squared loss, $\ell(p,y)=(p-y)^2$, the absolute loss, $\ell(p,y)=|p-y|$.

What would make an algorithm a good OCO algorithm?

What would make an algorithm a good OCO algorithm?

A good choice is the cumulative loss of the best fixed (or say static) hypothesis in hindsight

$$\min_{w \in \mathcal{W}} \sum_{t=1}^{T} f_t(w).$$

What would make an algorithm a good OCO algorithm?

A good choice is the cumulative loss of the best fixed (or say static) hypothesis in hindsight

$$\min_{w \in \mathcal{W}} \sum_{t=1}^{T} f_t(w).$$

Remark: To choose this best fixed hypothesis, we need to know future,

that is to collect all f_1,\cdots,f_T , then run an off-line algorithm.

The difference between the real cumulative loss and this minimum cumulative loss for fixed hypothesis in hindsight is defined as regret,

$$R(T) = \sum_{t=1}^{T} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=1}^{T} f_t(w).$$

The difference between the real cumulative loss and this minimum cumulative loss for fixed hypothesis in hindsight is defined as regret,

$$R(T) = \sum_{t=1}^{T} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=1}^{T} f_t(w).$$

Remark:

- If regret grows linearly, the player is not learning.
- If regret grows sub-linearly, R(T)=o(T), the player is learning and its prediction accuracy is improving. The regret per round goes to zeros as T goes to infinity.

$$\frac{1}{T} \left(\sum_{t=1}^{T} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=1}^{T} f_t(w) \right) \to 0, \quad T \to \infty.$$

α -strongly convex, β -smooth and γ -well- conditioned

Function $f:\mathcal{K}\to\mathbb{R}$, if for any $x,y\in\mathcal{K}$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\alpha}{2} ||y - x||^2.$$

then f is α -strongly convex.

if for any $x, y \in \mathcal{K}$,

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} ||y - x||^2.$$

then f is β -smooth.

If f is both α -strongly convex and β -smooth, we say that it is γ -well-conditioned where γ is the ratio between strong convexity and smoothness, also called the condition number of f

$$\gamma = \frac{\alpha}{\beta} \le 1.$$

Projections onto convex sets

Let $\mathcal K$ be a convex set, a projection onto a convex set is defined as the closest point inside the convex set to a given point.

$$\prod_{\mathcal{K}}(y) \triangleq \arg\min_{x \in \mathcal{K}} \|x - y\|.$$

Theorem

Let $K \subseteq \mathbb{R}^n$ be a convex set, $y \in \mathbb{R}^n$ and $x = \prod_K (y)$. Then for any $z \in K$ we have

$$||y - z|| \ge ||x - z||.$$

Gradient descent (GD) is the simplest and oldest of optimization methods given as follows:

Algorithm 1 Gradient descent (GD)

- 1: Input: f, T, initial point $x_1 \in \mathcal{K}$, sequence of step sizes $\{\eta_t\}$
- 2: for t = 1 to T do
- 3: Let $y_{t+1} = x_t \eta_t \nabla f(x_t), x_{t+1} = \prod_{\mathcal{K}} (y_{t+1})$
- 4: end for
- 5: return x_{T+1}

Theorem

For unconstrained minimization of γ -well-conditioned functions and $\eta_t=\frac{1}{\beta}$, GD Algorithm 1 converges as

$$h_{t+1} \le h_1 e^{-\gamma_t}.$$

where $h_t = f(x_t) - f(x^*)$.

Proof.

By strong convexity, we have for any pair $x, y \in \mathcal{K}$: $f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|^2$

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x}) + \frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|^{2}$$
$$\ge \min_{\mathbf{z}} \left\{ f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{z} - \mathbf{x}) + \frac{\alpha}{2} \|\mathbf{x} - \mathbf{z}\|^{2} \right\}$$

$$= f(\mathbf{x}) - \frac{1}{2\alpha} \|\nabla f(\mathbf{x})\|^2.$$
 $\mathbf{z} = \mathbf{x} - \frac{1}{\alpha} \nabla f(\mathbf{x})$

Denote by ∇_t the shorthand for $\nabla f(x_t)$. In particular, taking Basic definitions, algorithms and convergence results

Proof.

$$\begin{array}{ll} h_{t+1} - h_t &= f\left(\mathbf{x}_{t+1}\right) - f\left(\mathbf{x}_t\right) \\ &\leq \nabla_t^\top \left(\mathbf{x}_{t+1} - \mathbf{x}_t\right) + \frac{\beta}{2} \left\|\mathbf{x}_{t+1} - \mathbf{x}_t\right\|^2 & \beta\text{-smoothness} \\ &= -\eta_t \left\|\nabla_t\right\|^2 + \frac{\beta}{2} \eta_t^2 \left\|\nabla_t\right\|^2 & \text{algorithm defn.} \\ &= -\frac{1}{2\beta} \left\|\nabla_t\right\|^2 & \text{choice of } \eta_t = \frac{1}{\beta} \\ &\leq -\frac{\alpha}{\beta} h_t \end{array}$$

Thus,

$$h_{t+1} \le h_t (1 - \frac{\alpha}{\beta}) \le \dots \le h_1 (1 - \gamma)^t \le h_1 e^{-\gamma t}$$

Theorem

For constrained minimization of γ -well-conditioned functions and $\eta_t = \frac{1}{\beta}$, GD Algorithm 1 converges as

$$h_{t+1} \le h_1 e^{-\frac{\gamma_t}{4}}.$$

where $h_t = f(x_t) - f(x^*)$.

Proof.

$$\begin{split} &\prod_{\mathcal{K}} \left(\mathbf{x}_{t} - \eta_{t} \nabla_{t}\right) \\ &= \underset{\mathbf{x} \in \mathcal{K}}{\arg\min} \left\{ \left\|\mathbf{x} - \left(\mathbf{x}_{t} - \eta_{t} \nabla_{t}\right)\right\|^{2} \right\} \quad \text{definition of projection} \\ &= \underset{\mathbf{x} \in \mathcal{K}}{\arg\min} \left\{ \nabla_{t}^{\top} \left(\mathbf{x} - \mathbf{x}_{t}\right) + \frac{1}{2\eta_{t}} \left\|\mathbf{x} - \mathbf{x}_{t}\right\|^{2} \right\} \end{split}$$

Gradient descent (GD) for smooth, non strongly convex functions

Algorithm 2 Gradient descent reduction to β -smooth functions

1: Input: f, T, initial point $x_1 \in \mathcal{K}$, parameter $\tilde{\alpha}$

2: Let
$$g(x) = f(x) + \frac{\tilde{\alpha}}{2} ||x - x_1||^2$$

3: Apply Algorithm 1 with parameters $g,\,T,\,\{\eta_t=\frac{1}{\beta}\},\,x_1,$ return $x_T.$

Lemma

For β -smooth convex functions, Algorithm 2 with parameter $\tilde{\alpha}=\frac{\beta \log t}{D^2 t}$ converges as

$$h_{t+1} = \mathcal{O}\left(\frac{\beta \log t}{t}\right).$$

where D an upper bound on the diameter of K.

Gradient descent (GD) for strongly convex, non-smooth functions

Algorithm 3 Gradient descent reduction to non-smooth functions

- 1: Input: f, x_1, T, δ
- 2: Let $\hat{f}_{\delta}(x) = \mathbb{E}_{v \sim \mathbb{B}}[f(x + \delta v)]$
- 3: Apply Algorithm 1 on \hat{f}_{δ} , x_1 , T, $\{\eta_t = \delta\}$, return x_T .

Apply the GD algorithm to a smoothed variant of the objective function.

$$\mathbb{B} = \{x \in \mathbb{R}^n : \|x\| \leq 1\}$$
 is the Euclidean ball

 $v \sim \mathbb{B}$ is a random variable drawn from the uniform distribution over \mathbb{B} .

Gradient descent (GD) for strongly convex, non-smooth functions

Lemma

Let f be G-Lipschitz continuous and α -strongly convex, $\hat{f}_{\delta}(x) = \mathbb{E}_{v \sim \mathbb{B}}[f(x + \delta v)], \hat{f}_{\delta}$ has the following properties:

- 1. If f is lpha -strongly convex, then so is \hat{f}_{δ}
- 2. \hat{f}_{δ} is $\frac{nG}{\delta}$ -smooth
- 3. $|\hat{f}_{\delta}(x) f(x)| \leq \delta G$ for all $x \in \mathcal{K}$.

Lemma

For $\delta = \frac{dG}{\alpha} \frac{\log t}{t}$ Algorithm 3 converges as

$$h_t = \mathcal{O}\left(\frac{G^2 n \log t}{\alpha t}\right).$$

Convergence of GD

	general	lpha -strongly	eta -smooth	γ -well
Gradient descent	$\frac{1}{\sqrt{T}}$	$\frac{1}{\alpha T}$	$\frac{\beta}{T}$	$e^{-\gamma T}$
Accelerated GD	_	_	$\frac{\beta}{T^2}$	$e^{-\sqrt{\gamma}T}$

Support vector machines (SVM)

In SVM one does binary classification $(y \in \{-1, 1\})$ by determining a separating hyperplane $\omega^{\top}a - b$, i.e., by determining (ω, b) such that

$$\left\{ \begin{array}{ll} \boldsymbol{\omega}^{\top} a_j - b > 0 & \text{when } y_j = 1 \\ \boldsymbol{\omega}^{\top} a_j - b \leq 0 & \text{when } y_j = -1 \end{array} \right. \forall j = 1, \dots, N$$

using the hinge loss function

$$\ell_H(a, y; \omega, b) = \max\{0, 1 - y(\omega^\top a - b)\}$$

$$= \begin{cases} 0 & \text{if } y(\omega^\top a - b) \ge 1\\ 1 - y(\omega^\top a - b) & \text{otherwise} \end{cases}$$

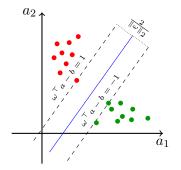
In fact, seeking a separating hyperplane $x = (\omega_*, b_*)$ can be done by

$$\min_{\omega,b} \frac{1}{N} \sum_{j=1}^{N} \ell_H(a_j, y_j; \omega, b) = L(\omega, b) \quad (**)$$

SVM

SVM

A regularizer $\frac{\lambda}{2} \|\omega\|_2^2$ is often added to $L(\omega, b)$ to obtain a maximum-margin separating hyperplane, which is more robust:



Maximizing $2/\|\omega\|_2$ is then the same as minimizing $\|\omega\|_2^2$.

Lili Song SVM 30/33

SVM

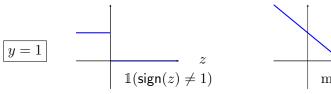
In SVM, the hinge loss is a convex and continuous replacement for

$$\ell(a, y; \omega, b) = \mathbb{1}(h(a; \omega, b) \neq y)$$

(with $\mathbb{1}(\text{condition}) = 1$ if condition is true and 0 otherwise), where

$$h(a; \omega, b) = \underbrace{2 \times \mathbb{1}(\omega^{\top} a - b > 0) - 1}_{\operatorname{sign}(\omega^{\top} a - b)}$$

which is nonconvex and discontinuous.



HINGE $\frac{z}{\max\{0, 1-z\}}$

In the pictures z plays the role of $\omega^{\top}a - b$.

Lili Song

SVM

There is a statistical interesting interpretation of such optimal linear classifier when using the above loss (as the so-called Bayes function).

Another replacement is the smooth convex logistic loss

$$\ell_L(a, y; \omega, b) = \log(1 + e^{-y(\omega^{\top} a - b)})$$

leading to logistic regression (convex objective function)

$$\min_{\omega, b} \frac{1}{N} \sum_{j=1}^{N} \ell_L(a_j, y_j; \omega, b) + \frac{\lambda}{2} ||\omega||_2^2$$

y = 1 $\log(1$

 $\log(1 + e^{-z})$

LOGISTIC LOSS

SVM 3

Lili Song

Reference

[1] E. Hazan, Introduction to online convex optimization. Foundations and Trends® in Optimization, 2(3-4), 157-325.

[2] L. N. Vicente, S. Gratton, and R. Garmanjani, Concise Lecture Notes on Optimization Methods for Machine Learning and Data Science, ISE Department, Lehigh University, January 2019.

Lili Song SVM 33/3