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Online Learning

What is online Learning?

Online learning is the process of answering a sequence of questions given
(maybe partial) knowledge of the correct answers to previous questions
and possibly additional available information.

Online Learning

for t=1,2,. . .
receive question xt ∈ X

predict pt ∈ D
receive true answer yt ∈ Y

suffer loss ` (pt, yt)
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Online Learning

Goal: minimize the cumulative loss suffered along its run

Process: deduce information from previous rounds to improve its
predictions on present and future questions

Remark: learning is hopeless if there is no correlation between past and
present rounds
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Online Learning Examples

Example ( Online Binary Prediction Game)

Email spam classification:

the player observes some features of an email and makes a binary
prediction, either spam or not spam.
for each round t = 1, . . . , T

observe a feature vector xt ∈ Rn of an instance

make a binary prediction ŷt ∈ {+1,−1}. +1, -1 represent ”spam”
and ”not spam”

observe feedback yt ∈ {+1,−1}
A loss is incurred `t = 1ŷt 6=yt

After T rounds, the cumulative loss is
∑T

t=1 `t.
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Online Learning Examples

Example ( Predicting whether it is going to rain tomorrow: )

day t, the question xt can be encoded as a vector of meteorological
measurements

the learner should predict if it’s going to rain tomorrow output a prediction

in [0, 1], D 6= Y.

loss function: `(pt, yt) = |pt − yt|

which can be interpreted as the probability to err if predicting that it’s
going to rain with probability pt
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Online Learning Examples

Example (Online Binary Linear Predictor with Hinge Loss:)

The hypothesis hw : Rn → {+1,−1}

hw(x) = sign(w · x) =

{
+1, if w · x > 0

−1, if w · x < 0

is called binary linear predictor. The hypothesis class H

H = {hw(x) : w ∈ Rn, ‖w‖2 ≤ 1},

is the class of binary linear predictors.
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Online Learning Examples

Geometrically, all vectors that are perpendicular to w (i.e. zero inner
product) forms a hyperplane {x : w · x = 0}, shown in Figure 1. The data
may fall into one of halfspaces {x : w · x < 0} and {x : w · x > 0}. |w · x|
can be interpreted as the prediction confidence.
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Hinge Loss Function

The hinge loss function is defined as

`(w; (xt, yt)) = max{0, 1− ytw · xt}.

As shown in Figure 2,
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Hinge Loss Function

Hinge loss function imposes penalty for wrong prediction (ytw · xt < 0)
and right prediction with small confidence (0 ≤ ytw · xt ≤ 1).

For t = 1, · · · , T,

Player chooses wt ∈ W, where W = {w ∈ Rn : ‖w‖2 ≤ 1}, a unit
ball in Rn

Environment chooses (xt, yt)

Player incurs a loss `t(wt; (xt, yt)) = max{0, 1− ytw · xt}

Player receives feedback (xt, yt).
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Comparison Between Online Learning and Statistical
Learning

Figure: Comparison Between Online Learning and Statistical Learning
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Online Convex Optimization (OCO)

In online convex optimization, an online player iteratively makes decisions.
After committing to a decision, the decision maker suffers a loss. The
losses can be adversarially chosen, and even depend on the action taken by
the decision maker.

Applications:

Online advertisement placement

web ranking

spam filtering

online shortest paths

portfolio selection

recommender systems
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OCO Restrictions:

Necessary Restrictions:

The losses determined by an adversary should not be unbounded.

Otherwise the adversary could keep decreasing the scale of the loss at
each step.

The decision set must be bounded and/or structured.

Otherwise, an adversary can assign high loss to all the strategies
chosen by the player indefinitely, while setting apart some strategies
with zero loss. This precludes any meaningful performance metric.
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OCO protocol

The protocol of OCO is as follows:

Let T denote the total number of game iterations, for t = 1, · · · , T,

Player chooses wt ∈ W, where W is a convex set in Rn

Environment chooses a convex loss function ft :W → R

Player incurs a loss `t = ft(wt) = ft(wt; (xt, yt))

Player receives feedback ft.
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OCO Examples

Example ( Prediction from expert advice )

The decision maker has to choose among the advice of n given experts.
i.e., the n-dimensional simplex X = {x ∈ Rn,

∑
i xi = 1, xi ≥ 0}.

gt(i): the cost of the i’th expert at iteration t

gt: the cost vector of all n experts

The cost function is given by the linear function ft(w) = gTt x.
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OCO Examples

Example (Online regression)

X = Rn corresponds to a set of measurements

Y = D = R

Consider the problem of estimating the fetal weight based on ultrasound
measurements of abdominal circumference and femur length.

For each x ∈ X = R2, the goal is to predict the fetal weight.
Common loss functions for regression problems are:

the squared loss, `(p, y) = (p− y)2,
the absolute loss, `(p, y) = |p− y|.
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Regret

What would make an algorithm a good OCO algorithm?

A good choice is the cumulative loss of the best fixed (or say static)
hypothesis in hindsight

min
w∈W

T∑
t=1

ft(w).

Remark: To choose this best fixed hypothesis, we need to know future,

that is to collect all f1, · · · , fT , then run an off − line algorithm.
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Regret

The difference between the real cumulative loss and this minimum
cumulative loss for fixed hypothesis in hindsight is defined as regret,

R(T ) =

T∑
t=1

ft(wt)− min
w∈W

T∑
t=1

ft(w).

Remark:

If regret grows linearly, the player is not learning.

If regret grows sub-linearly, R(T ) = o(T ), the player is learning and
its prediction accuracy is improving. The regret per round goes to
zeros as T goes to infinity.

1

T

(
T∑
t=1

ft(wt)− min
w∈W

T∑
t=1

ft(w)

)
→ 0, T →∞.
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α-strongly convex, β-smooth and γ-well- conditioned

Function f : K → R,
if for any x, y ∈ K,

f(y) ≥ f(x) +∇f(x)T (y − x) + α

2
‖y − x‖2.

then f is α-strongly convex.

if for any x, y ∈ K,

f(y) ≤ f(x) +∇f(x)T (y − x) + β

2
‖y − x‖2.

then f is β-smooth.

If f is both α-strongly convex and β-smooth, we say that it is
γ-well-conditioned where γ is the ratio between strong convexity and
smoothness, also called the condition number of f

γ =
α

β
≤ 1.
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Projections onto convex sets

Let K be a convex set, a projection onto a convex set is defined as the
closest point inside the convex set to a given point.∏

K
(y) , argmin

x∈K
‖x− y‖.

Theorem

Let K ⊆ Rn be a convex set, y ∈ Rn and x =
∏
K(y) . Then for any

z ∈ K we have
‖y − z‖ ≥ ‖x− z‖.
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Gradient descent (GD)

Gradient descent (GD) is the simplest and oldest of optimization methods
given as follows:

Algorithm 1 Gradient descent (GD)

1: Input: f, T, initial point x1 ∈ K, sequence of step sizes {ηt}

2: for t = 1 to T do

3: Let yt+1 = xt − ηt∇f(xt), xt+1 =
∏
K(yt+1)

4: end for

5: return xT+1
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Gradient descent (GD)

Theorem

For unconstrained minimization of γ-well-conditioned functions and
ηt =

1
β , GD Algorithm 1 converges as

ht+1 ≤ h1e−γt .

where ht = f(xt)− f(x∗).

Proof.

By strong convexity, we have for any pair x, y ∈ K :

f(y) ≥ f(x) +∇f(x)>(y − x) +
α

2
‖x− y‖2

≥ min
z

{
f(x) +∇f(x)>(z− x) +

α

2
‖x− z‖2

}
= f(x)− 1

2α
‖∇f(x)‖2. z = x− 1

α
∇f(x)

Denote by ∇t the shorthand for ∇f(xt). In particular, taking
x = xt, y = x∗,

‖∇t‖2 ≥ 2α(f(xt)− f(x∗)) = 2αht.
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Gradient descent (GD)

Proof.

ht+1 − ht = f (xt+1)− f (xt)
≤ ∇>t (xt+1 − xt) +

β
2 ‖xt+1 − xt‖2 β-smoothness

= −ηt ‖∇t‖2 + β
2 η

2
t ‖∇t‖

2 algorithm defn.

= − 1
2β ‖∇t‖

2 choice of ηt =
1
β

≤ −α
βht

Thus,

ht+1 ≤ ht(1−
α

β
) ≤ · · · ≤ h1(1− γ)t ≤ h1e−γt
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Gradient descent (GD)

Theorem

For constrained minimization of γ-well-conditioned functions and ηt =
1
β ,

GD Algorithm 1 converges as

ht+1 ≤ h1e−
γt
4 .

where ht = f(xt)− f(x∗).

Proof.∏
K (xt − ηt∇t)

= argmin
x∈K

{
‖x− (xt − ηt∇t)‖2

}
definition of projection

= argmin
x∈K

{
∇>t (x− xt) +

1
2ηt
‖x− xt‖2

}
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Gradient descent (GD) for smooth, non strongly convex
functions

Algorithm 2 Gradient descent reduction to β-smooth functions

1: Input: f, T, initial point x1 ∈ K, parameter α̃

2: Let g(x) = f(x) + α̃
2 ‖x− x1‖

2

3: Apply Algorithm 1 with parameters g, T, {ηt = 1
β}, x1, return xT .

Lemma

For β-smooth convex functions, Algorithm 2 with parameter α̃ = β log t
D2t

converges as

ht+1 = O
(
β log t

t

)
.

where D an upper bound on the diameter of K.
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Gradient descent (GD) for strongly convex, non-smooth
functions

Algorithm 3 Gradient descent reduction to non-smooth functions

1: Input: f, x1, T, δ

2: Let f̂δ(x) = Ev∼B[f(x+ δv)]

3: Apply Algorithm 1 on f̂δ, x1, T, {ηt = δ}, return xT .

Apply the GD algorithm to a smoothed variant of the objective function.

B = {x ∈ Rn : ‖x‖ ≤ 1} is the Euclidean ball

v ∼ B is a random variable drawn from the uniform distribution over B.
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Gradient descent (GD) for strongly convex, non-smooth
functions

Lemma

Let f be G-Lipschitz continuous and α-strongly convex,
f̂δ(x) = Ev∼B[f(x+ δv)], f̂δ has the following properties:
1. If f is α -strongly convex, then so is f̂δ
2. f̂δ is

nG
δ -smooth

3. |f̂δ(x)− f(x)| ≤ δG for all x ∈ K.

Lemma

For δ = dG
α

log t
t Algorithm 3 converges as

ht = O
(
G2n log t

αt

)
.

Lili Song Basic definitions, algorithms and convergence results 27/33



Convergence of GD

general α -strongly β -smooth γ -well

Gradient descent 1√
T

1
αT

β
T e−γT

Accelerated GD − − β
T 2 e−

√
γT
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SVM

Support vector machines (SVM)

In SVM one does binary classification (y ∈ {−1, 1}) by determining a
separating hyperplane ω>a− b, i.e., by determining (ω, b) such that{

ω>aj − b > 0 when yj = 1
ω>aj − b ≤ 0 when yj = −1

∀j = 1, . . . , N

using the hinge loss function

`H(a, y;ω, b) = max{0, 1− y(ω>a− b)}

=

{
0 if y(ω>a− b) ≥ 1
1− y(ω>a− b) otherwise

In fact, seeking a separating hyperplane x = (ω∗, b∗) can be done by

min
ω,b

1

N

N∑
j=1

`H(aj , yj ;ω, b) = L(ω, b) (∗∗)
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SVM

A regularizer λ
2‖ω‖

2
2 is often added to L(ω, b) to obtain a

maximum-margin separating hyperplane, which is more robust:

a1

a2
2‖ω‖
2

ω
> a
−
b
=

1
ω

> a
−
b
=
−
1

Maximizing 2/‖ω‖2 is then the same as minimizing ‖ω‖22.
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SVM

In SVM, the hinge loss is a convex and continuous replacement for

`(a, y;ω, b) = 1(h(a;ω, b) 6= y)

(with 1(condition) = 1 if condition is true and 0 otherwise), where

h(a;ω, b) = 2× 1(ω>a− b > 0)− 1︸ ︷︷ ︸
sign(ω>a−b)

which is nonconvex and discontinuous.

y = 1

1(sign(z) 6= 1)

z

HINGE

max{0, 1− z}
z

In the pictures z plays the role of ω>a− b.
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SVM

There is a statistical interesting interpretation of such optimal linear
classifier when using the above loss (as the so-called Bayes function).

Another replacement is the smooth convex logistic loss

`L(a, y;ω, b) = log(1 + e−y(ω
>a−b))

leading to logistic regression (convex objective function)

min
ω,b

1

N

N∑
j=1

`L(aj , yj ;ω, b) +
λ

2
‖ω‖22

LOGISTIC LOSS

log(1 + e−z)y = 1
z
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