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Recap on OCO

Online learning is the process of answering a sequence of questions
given (maybe partial) knowledge of the correct answers to previous
questions and possibly additional available information.

Goal: minimize the cumulative loss suffered along its run

Process: deduce information from previous rounds to improve
its predictions on present and future questions
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Recap on OCO

The difference between the real cumulative loss and this minimum
cumulative loss in hindsight is defined as regret:

R(T ) =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x)

If regret grows linearly, the player is not learning.

If regret grows sub-linearly, R(T ) = o(T ), the player is
learning and its prediction accuracy is improving.

1

T

(
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(xt)

)
→ 0, T →∞
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Online Gradient Descent

Algorithm 1 Online Gradient Descent (OGD) Algorithm

1: Input: convex set K,T , x1 ∈ K, step sizes {ηt}
2: for k = 1, . . . ,T do

3: Play xt and observe cost ft (xt)

4: Update and project:

xt+1 =
∏
K

(xt − ηt∇ft (xt))

5: end for
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Online Gradient Descent

In each iteration, the algorithm takes a step from the previous
point in the direction of the gradient of the previous cost.
This step may result in a point outside of the underlying
convex set. In such cases, the algorithm projects the point
back to the convex set.

The regret attained by the algorithm is sub-linear.
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Online Gradient Descent

Theorem

Algorithm 1 with step size ηt = D
G
√
t
guarantees

regretT =
T∑
t=1

ft (xt)− min
x∗∈K

T∑
t=1

ft (x?) ≤ 3

2
GD
√
T

where

D : D = max
x ,y∈K

‖x − y‖, diameter of K

G : ‖∇ft‖ ≤ G , bound on gradient norm
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Online Gradient Descent

Let x? ∈ arg minx∈K
∑T

t=1 ft(x). Define ∇t , ∇ft (xt) .
By convexity

ft (xt)− ft (x?) ≤ ∇>t (xt − x?) (1)

By the Pythagorean theorem:

‖xt+1 − x?‖2 =

∥∥∥∥∥∏
K

(xt − ηt∇t)− x?

∥∥∥∥∥
2

≤ ‖xt − ηt∇t − x?‖2

(2)

‖xt+1 − x?‖2 ≤‖xt − x?‖2 + η2t ‖∇t‖2 − 2ηt∇>t (xt − x?) (3)

2∇>t (xt − x?) ≤‖xt − x?‖2 − ‖xt+1 − x?‖2

ηt
+ ηtG

2 (4)
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Online Gradient Descent

Plug (4) into (1) we have,

2

(
T∑
t=1

ft (xt)− ft (x∗)

)
≤ 2

T∑
t=1

∇>t (xt − x∗)

≤
T∑
t=1

‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt
+ G 2

T∑
t=1

ηt

≤
T∑
t=1

‖xt − x∗‖2
(

1

ηt
− 1

ηt−1

)
+ G 2

T∑
t=1

ηt

≤ D2
T∑
t=1

(
1

ηt
− 1

ηt−1

)
+ G 2

T∑
t=1

ηt

≤ D2 1

ηT
+ G 2

T∑
t=1

ηt ≤ 3DG
√
T
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Stochastic Optimization

Stochastic problem
min
x∈K

f (x)

f is a convex function, K is a convex domain.

Access to a noisy gradient ∇̃t

E[∇̃t ] = ∇f (xt),E[‖∇̃t‖2] ≤ G 2. (5)

Define linear loss function ft(x) = ∇̃>t x . Applying OGD to ft ,
obtain SGD algorithm.

From regret bound of OGD to convergence rates of SGD.
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Stochastic Optimization

Algorithm 2 Stochastic Gradient Descent

1: Input: f , K, T , x1 ∈ K, step size {ηt}
2: for k = 1, . . . ,T do

3: Generate ∇̃t s.t. (5)

4: Update and project

xt+1 =
∏
K

(xt − ηt∇̃t)

5: end for

6: return x̃T = 1
T

∑T
t=1 xt
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Regret Bound to Convergence Rate

Theorem

Algorithm 2 with step size η = D
G
√
T

has

E[f (x̃T )] ≤ f (x∗) +
3GD

2
√
T
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Regret Bound to Convergence Rate

Proof :

E[f (x̃T )]− f (x∗) ≤E[
1

T

∑
t

f (xt)]− f (x∗)

≤ 1

T
E[
∑
t

∇f (xt)
>(xt − x∗)]

=
1

T
E[
∑
t

∇̃>t (xt − x∗)]

≤ regretT
T

≤ 3GD

2
√
T
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Online Gradient Descent for Strongly Convex Functions

Theorem

For α-strongly convex loss functions, Algorithm 1 with step sizes
ηt = 1

αt has

regretT ≤
G 2

2α
(1 + logT )
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Online Gradient Descent for Strongly Convex Functions

Applying the definition of α-strong convexity to the pair of points
xt , x

∗, we have

2 (ft (xt)− ft (x?)) ≤ 2∇>t (xt − x?)− α ‖x? − xt‖2 (6)

By the Pythagorean theorem:

‖xt+1 − x?‖2 =

∥∥∥∥∥∏
K

(xt − ηt∇t)− x?

∥∥∥∥∥
2

≤ ‖xt − ηt∇t − x?‖2

‖xt+1 − x?‖2 ≤ ‖xt − x?‖2 + η2t ‖∇t‖2 − 2ηt∇>t (xt − x?)

2∇>t (xt − x?) ≤ ‖xt−x
?‖2−‖xt+1−x?‖2

ηt
+ ηtG

2
(7)
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Online Gradient Descent for Strongly Convex Functions

Plug (7) into (6) we have,

2
T∑
t=1

(ft (xt)− ft (x?))

≤
T∑
t=1

‖xt − x?‖2
(

1

ηt
− 1

ηt−1
− α

)
+ G 2

T∑
t=1

ηt

= 0 + G 2
T∑
t=1

1

αt

≤ G 2

α
(1 + logT )
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