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@ What is Adversarial Examples
© Attack (How to generate adversarial examples)

© Defense
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Background

@ Machine learning model, training dataset, testing dataset

@ The performance of machine learning models in computer vision is
impressive.
e Have achieved human and even above-human accuracy in many tasks
o ImageNet challenge. In just seven years, the winning accuracy in
classifying objects in the dataset rose from 71.8% to 97.3%
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Error rate history on ImageNet

Figure: From https://qz.com /1034972 /the-data-that-changed-the-direction- of—al—
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What is Adversarial Examples

@ Setup: A trained CNN to classify images

@ An adversarial example is an instance with small, intentional
perturbations that cause a machine learning model to make a false
prediction.

Figure: From Explaining and Harnessing Adversarial Examples by Goodfellow et al.
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What is Adversarial Examples (Cont'd)

o Targeted attack

argminx (“ygoal - }7(X, W)H% + )‘HX - Xtarget”%)
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What is Adversarial Examples (Cont'd)

@ Untargeted attack

argminx HYgoal - )7(X, W)H%

Figure: From Tricking Neural Networks: Create your own Adversarial
Examples by Daniel Geng and Rishi Veerapaneni
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Why do we need to care about Adversarial Examples

@ Security risk: adversarial examples can be transferred from one model
to another
e facial recognition, self-driving cars, biometric recognition
e existence of 2D picture objects in the physical world demo
o existence of 3D adversarial objects in the physical world!

@ Understanding of ML models

1Synthesizing robust adversarial examples, Athalye et al.
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https://www.youtube.com/watch?v=zQ_uMenoBCk

Why do we have adversarial examples

o Overfitting, nonlinearity, insufficient regularization

@ Local linearity
@ Data perspective
o Non-robust features learnt by neural network?
o CNN can exploit the high-frequency image components that are not
perceivable to human?
o low frequencies in images mean pixel values that are changing slowly
over space, while high frequency content means pixel values that are
rapidly changing in space.

2Adversarial Examples Are Not Bugs, They Are Features, llyas et al.
3High Frequency Component Helps Explain the Generalization of Convolutional

Neural Networks, Wang et al.
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Overfitting, nonlinearity, insufficient regularization

Figure: From McDaniel, Papernot, and Celik, IEEE Security & Privacy Magazine
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Non-robust features explanation

Figure: we disentangle features into combinations of robust/non-robust features.

From Adversarial Examples Are Not Bugs, They Are Features, Andrew et al. ,



How to generate adversarial examples (attack)

x is the input, y is the ground truth label, w is the parameters of the
model. Based on the gradient information V,J(x,y, w).
o Whitebox attack

Box-constrained L-BFGS
Fast Gradient Sign Method
Basic Iterative Method

@ Blackbox attack

o Transferability of adversaries
e Gradient estimation
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Attack with L-BFGS

@ Smoothness prior means for a small enough radius € > 0 in the
vicinity of a given training input, an x + r satisfying ||r|| < € will get
assigned correct label with high probability.

@ In [Szegedy et al. 2014], it is pointed out that this smoothness
assumption does not hold for neural network.

@ Using a simple optimization procedure to find adversarial examples.
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Attack with L-BFGS

@ Settings
We denote f : R™ — {1--- k} a classifier mapping image pixel value
vectors (normalized to range [0, 1]) to a discrete label set. Also, f has
an associated continuous loss function losss.

e For a given x € R™ and target label y € {1--- k}, we try to solve the
following constrained optimization problem.

min |r[l2
s.it.f(x+r)=y, (1)
x+relo,1m

x 4 r will be the resulting adversarial example.
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Attack with L-BFGS

@ Solve the aforementioned problem exactly can be hard. Instead, we

approximately optimize the corresponding penalty function using a
box-constrained L-BFGS.

i I
min c||rl|2 + lossg(x + r, y)

()

s.t.x+r € [0,1]7,

Here the scalar c is the number that makes the resulting minimizer r
satisfy f(x + r) = y, which can be found using binary search.
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Properties of the resulting adversarial example

@ Cross model generalization: Many misclassified by different network

@ Cross training-set generalization: Many misclassified by network
trained on a disjoint training set.
Conclusion:
It suggests that adversarial examples are universal and not the results of
overfitting or specific to training set.
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Fast Gradient Sign Method*

@ Linearity brings adversarial examples
e Linear behavior in high-dimensional spaces is sufficient to cause
adversarial examples
e Dropout, pretraining and model averaging do not significantly increase
robustness
o Models that are easy to optimize are easy to perturb.

*Explaining and Harnessing Adversarial Examples by Goodfellow et al.
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Fast Gradient Sign Method: For linear model

Considering linear model:

WTX

perturbation on the input: X = x+ 7. And ||n||s <.

Then

wlig=wlx+ WT7].

To maximize deviation, set n = sign(w). Then w7 = nme
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Fast Gradient Sign Method: For nonlinear model

J(x,y,w) is the cost function to train the neural network. Assume there is
local linearity regarding to x for the current w and y. Then to maximize
J(x +n,y,w) where ||n]|ec <€, set

1 = esign(VxJ(x,y,w)).

This is the fast gradient sign method to generate adversarial examples.
The gradient can be efficiently computed using back propagation.
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Fast Gradient Sign Method: Numerical result

Figure: The fast gradient sign method applied to logistic regression. The logistic
regression model has a 1.6% error rate on the 3 versus 7 discrimination task. The
logistic regression model has an error rate of 99% on these examples.
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Fast Gradient Sign Method: Defense

Adversarial objective function based on the fast gradient sign method:

J(x,y,w) = ad(x,y,w) + (1 — a)J(x + esign(VxJ(x, y,w)), y, w)

For a maxout network, the error rate on adversarial examples decrease
from 89.4% to 17.9%.
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An optimization view on adversarial robustness

Training problem:
minyp(w), where p(w)=E( . p[J(w,x,y)]
Min-max problem:

miny,p(w), where p(w) = E(, ,)p[maxsesd(w,x+0,y)]

e Attack: maxsesJ(w,x+d,y)

o Constrained nonconvex problem (robust optimization)
o Projected gradient descent:

Xt+1 = HX+5(Xt + asgn(VX)J(W7 va))

@ Defense: min-max problem
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How to defend

@ Adversarial Training: Incorporating adversarial examples into the
training data

e Feeding the model with both the original data and the adversarial
examples data
o Learning with a modified objective function

@ Defensive distillation
@ Parseval networks
e Lipschitz constant is bounded

@ and more ...
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Defensive Distillation®

Knowledge Distillation®: a way to transfer knowledge from a large neural
networks to a smaller one

Figure: From:
https://medium.com/neuralmachine/knowledge-distillation-dc241d7¢2322

®Distilling the Knowledge in a Neural Network, Hinton et al. 2015
%Distillation as a Defense to Adversarial Perturbations against Deep Neural

Networks, Papernot et al. 2016
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Defensive Distillation: Softmax temperature

The output of a normal softmax function has the correct class at a very

high probability, with all other class probabilities very close to 0.
Softmax function with temperature:

zi(X)
e T
m—1 Zi(X)]
i=0 € T Jico,.. m-1

geeey

F(X) =

z(X)

Denote g(X) = 7 ;Le™ 7, then
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Defensive Distillation (Cont'd)

z(X)

Denote g(X) = 7 ;Le™ T, then
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Defensive Distillation (Cont'd)

Figure: An overview of the defense mechanism based on a transfer of knowledge
contained in probability vectors through distillation

@ Reduce the gradient exploited by the adversaries
@ Smooth the model
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Defensive Distillation (Cont

Figure: An exploration of the temperature parameter space: for 900 targets
against the MNIST and CIFAR10 based models and several distillation
temperatures
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Adversarial Training

A lot of methods have been proposed
@ adversarial retraining [Grosse, 2017]
e critical path identification [Wang, 2018]
@ build subnetwork as adversary detector [Metzen, 2017]

@ and more - --
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Subnetwork as Adversary Detector

Key idea:
instead of making the model robust, consider branching off the main
network and add an subnetwork as the "adversary detection network”.

Figure: Example ResNet with adversary detection network

The detector outputs p.qy € [0,1], can be interpreted as the probability of
the input being adversarial.
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Subnetwork as Adversary Detector

General procedure:
@ train the classification network on regular(no adversarial) data,

@ generate adversarial examples for each data points using existing
attacking methods, assign original with label zero and adversarial with
label 1

© fix the weights of network and train the detector, based on
cross-entropy of p,q, and the labels.

@ for specific classification network, detector network maybe attached at
different places.

31/41



Subnetwork as Adversary Detector

The attack methods used for generating adversarial examples are:
@ Fast Gradient Sign Method

XadV =X+ esign(VXJ(X7Y7 W))

@ Basic Iterative Method (iterative version of fast method)

dv d : d d
X% = x,xp07 = Clips {x7" + asgn(VxJas(X7, Ytrue))} — lso norm
Vi J t
xgd" X xn+1 PrOJX{xad" + « ols (X2 Yerue) } — h norm

HV Jc/s( 7Ytrue)||2

© DeepFool Method

Iteratively perturbs an image xgd".
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Subnetwork as Adversary Detector

Experiment details:
o Network: a 32-layer Residual Network
e Data: CIFAR 10, 45000 data points for training and 5000 for testing

@ Optimization: Adam with learning rate 0.0001 and
1 = 0.99, B> = 0.999.

@ Detector was trained for 20 epochs

@ Benchmark: test accuracy of 91.3% on non-adversarial data
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Subnetwork as Adversary Detector

Figure: Example ResNet with adversary detection network
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Subnetwork as Adversary Detector

The generalizability of trained detectors

Figure: Example ResNet with adversary detection network

Adversaries need to generalize across models, detectors, on the other

hand, requires generalizability across adversaries.
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Subnetwork as Adversary Detector

The generalizability of trained detectors

Figure: Example ResNet with adversary detection network
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Subnetwork as Adversary Detector

Dynamic Adversaries:

Since we add an extra detector, we need to consider the possibility of a
strong adversary, which have access to classification network and its
gradient but also to the adversary detector and its gradient.
Objective:

Maximize the following cost function

(1 - O')Jcls(xa)’true) + O'Jdet(x) 1)7

then the classifier will try to mis-label input x and make the detector
output fail to classify x as adversary at the same time.
Method:

xgd" = X,

X2 = ClipS {x2 +a[(1—0)sgn(VxJes(x2%, yirue))+058n(V xJaer (329, 1))]
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Subnetwork as Adversary Detector

Method:

x@ = x,

ﬁi"l Cllpx{xadv—i-a[(l o)sgn(VxJes(x? 7}/true))+05gn(v Jdet (X7 adv ;1))

Dynamic Detector:

©@ When training the detector, instead of precomputing a dataset of
adversarial examples, we compute adversarial examples on-the-fly for
each mini-batch.

@ Let the adversary modify each data point with probability 0.5, where
the adversary has o selected uniform randomly from [0, 1].

© Training detector this way,both the detector and adversary adapt to
each other.
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Subnetwork as Adversary Detector

Evaluate dynamic adversaries for o € {0.0,0.1,--- ,1.0}

Figure: Example ResNet with adversary detection network

A dynamic detector is more robust.
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