Lagrange Polynomial in Interpolation

Liyuan Cao

OptML Feb 5, 2020

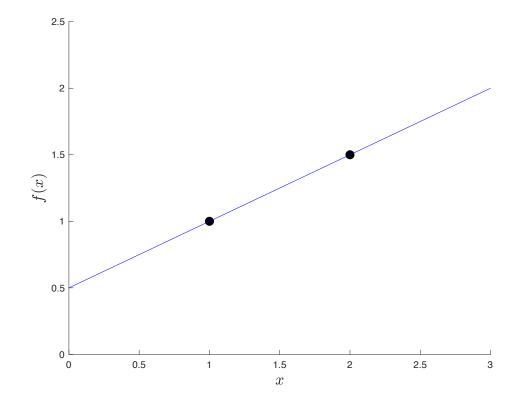
We have function *f* and sample points

$$Y = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, f(Y) = \begin{bmatrix} 1 \\ 1.5 \end{bmatrix}.$$

We want to approximate f with a linear function

$$m(x) = \alpha_0 + \alpha_1 x.$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1.5 \end{bmatrix}.$$



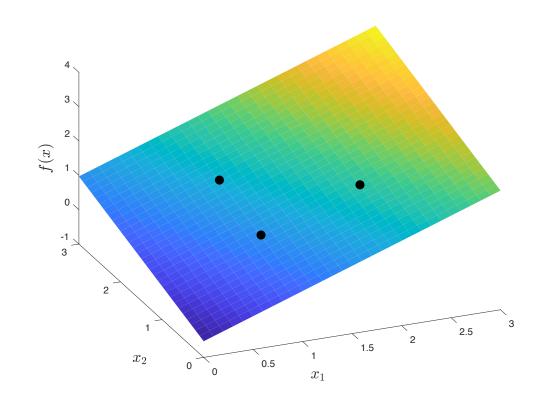
We have function *f* and sample points

$$Y = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 1 \end{bmatrix}, f(Y) = \begin{bmatrix} 1 \\ 1.5 \\ 2 \end{bmatrix}.$$

We want to approximate f with a linear function

$$m(x) = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_2.$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1.5 \\ 2 \end{bmatrix}.$$



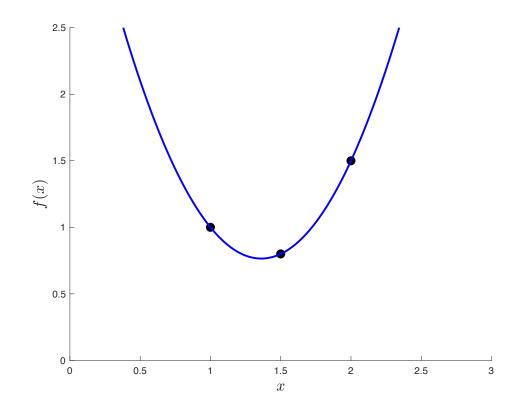
We have function *f* and sample points

$$Y = \begin{bmatrix} 1 \\ 1.5 \\ 2 \end{bmatrix}, f(Y) = \begin{bmatrix} 1 \\ 0.8 \\ 1.5 \end{bmatrix}.$$

We want to approximate f with a linear function

$$m(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2.$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1.5 & 2.25 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0.8 \\ 1.5 \end{bmatrix}.$$



DFO Algorithm Using Interpolation

Start with some x^* and some Δ .

LOOP:

- 1. Get a sample set $\{y_0, y_1, y_2, \dots, y_p\}$;
- 2. Calculate the interpolation model m(x);
- 3. Solve $x_1 \leftarrow \min_{x \in TR} m(x)$;
- 4. If $f(x_1) \le f(x^*)$, then $x^* \leftarrow x_1$;
- 5. Adjust Δ accordingly.

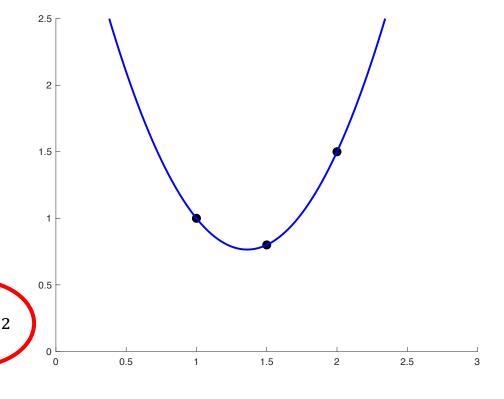
We have function *f* and sample points

$$Y = \begin{bmatrix} 1 \\ 1.5 \\ 2 \end{bmatrix}, f(Y) = \begin{bmatrix} 1 \\ 0.8 \\ 1.5 \end{bmatrix}.$$

We want to approximate f with a linear function

$$m(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2.$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1.5 & 2.25 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0.8 \\ 1.5 \end{bmatrix}.$$



Basis

Is there a "correct" one?

$$\phi(x_1, x_2) = \begin{bmatrix} 1 & x_1 & x_2 & x_1^2 & x_1x_2 & x_2^2 \end{bmatrix}^T$$

$$\phi(x_1, x_2) = \begin{bmatrix} 1 & x_1 & x_2 & \frac{1}{2}x_1^2 & x_1x_2 & \frac{1}{2}x_2^2 \end{bmatrix}^T$$

NO! And this is also correct.

$$\phi(x_1, x_2) = \begin{bmatrix} 1 & x_1 + x_2 & x_2 - x_1 + x_1 x_2 & \frac{1}{2}x_1^2 - x_1 & x_1 x_2 & \frac{1}{2}x_2^2 + 3.14 \end{bmatrix}^T$$

Basis

If we call this natural basis

$$\bar{\phi}(x) = \begin{bmatrix} 1 & x_1 & x_2 & \frac{1}{2}x_1^2 & x_1x_2 & \frac{1}{2}x_2^2 \end{bmatrix}^T$$

then any basis

$$\phi(x) = P \; \bar{\phi}(x)$$

with non-singular P is a valid basis.

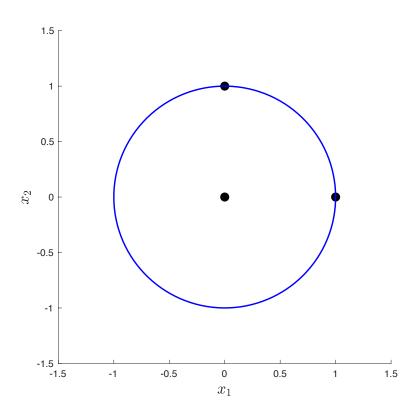
Let p+1 be the length of $\overline{\phi}(x)$, then $P \in \mathbb{R}^{(p+1)\times(p+1)}$.

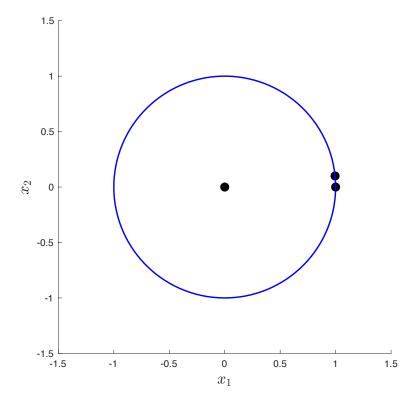
Given the form of m(x), if there are p+1 coefficients, we need p+1 sample points to uniquely define the interpolation model. Let them be

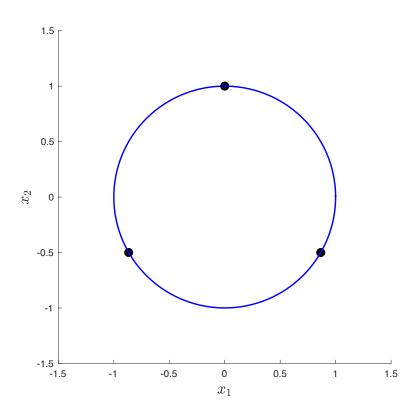
$$\{y_0, y_1, y_2, \cdots, y_p\}.$$

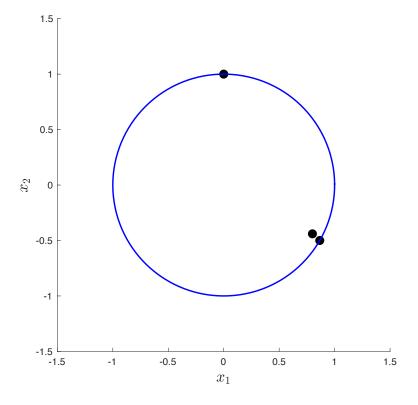
Let
$$\Phi = \begin{bmatrix} \phi(y_0)^T \\ \phi(y_1)^T \\ \vdots \\ \phi(y_p)^T \end{bmatrix}$$
, $\vec{f} = \begin{bmatrix} f(y_0) \\ f(y_1) \\ \vdots \\ f(y_p) \end{bmatrix}$, and α be all the coefficients,

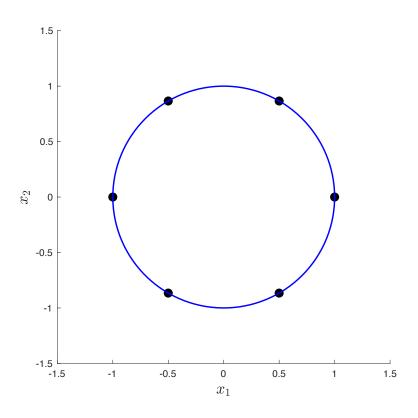
then we can get the interpolation model $m(x) = \alpha^T \phi(x)$ by solving $\Phi \alpha = \vec{f}$.



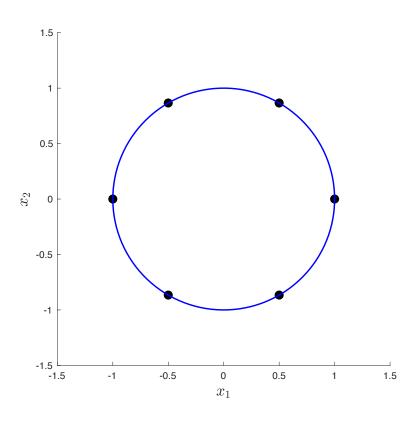












means how well a sample set is distributed in an area for interpolation purpose

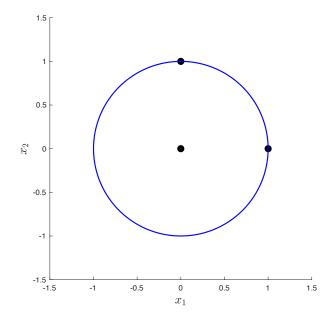
- How to measure poisedness exactly (mathematically)?
- How do we improve poisedness?

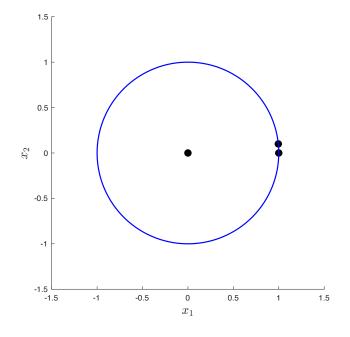
Remember $\Phi \alpha = f$?

Let $cond(\Phi)$ be our measure of poisedness!

$$\Phi = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \operatorname{cond}(\Phi) = 3.7321 \qquad \Phi = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0.9950 & 0.0998 \end{bmatrix}, \operatorname{cond}(\Phi) = 30.2128$$

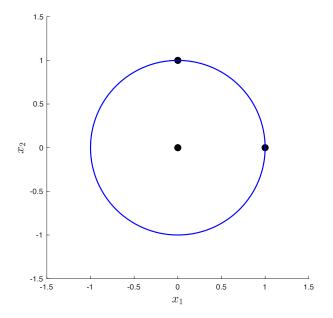
$$\Phi = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0.9950 & 0.0998 \end{bmatrix}, cond(\Phi) = 30.2128$$





$$\Phi = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0.9499 & -9.9699 & 10.0200 \end{bmatrix},$$

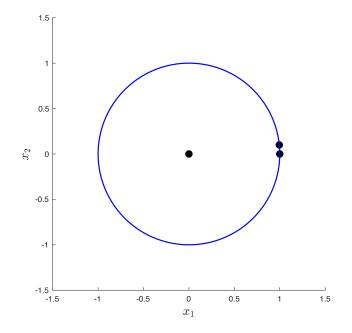
$$cond(\Phi) = 20.0802$$



But that really depends on the basis. The condition number can be anything in $[1, \infty)$.Let

$$\phi(x) = [1 - x_1 - 0.0501x_2, x_1 - 9.9699x_2, 10.0200x_2]^T$$

$$\Phi = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, cond(\Phi) = 1$$

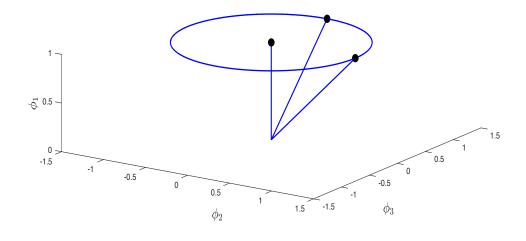


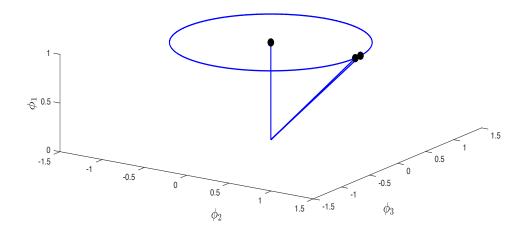
What about $|\Phi|$?

Poisedness

$$\Phi = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, |\Phi| = 1$$

$$\Phi = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0.9950 & 0.0998 \end{bmatrix}, |\Phi| = 0.0998$$





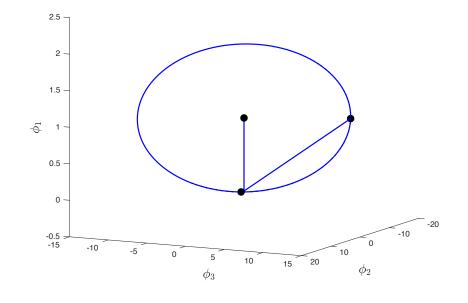
What about $|\Phi|$? Let

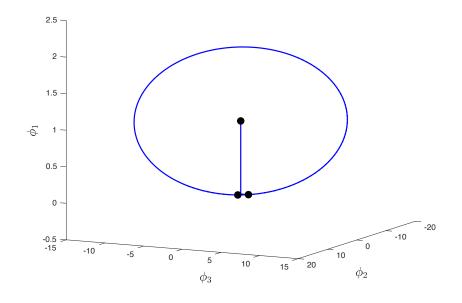
$$\phi(x) = [1 - x_1 - 0.0501x_2, x_1 - 9.9699x_2, 10.0200x_2]$$

determinant of product = product of determinant

$$\Phi = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0.9499 & -9.9699 & 10.0200 \end{bmatrix}, \qquad \Phi = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, |\Phi| = 1$$

$$|\Phi| = 10.0200$$

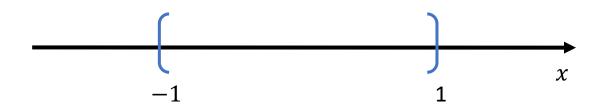


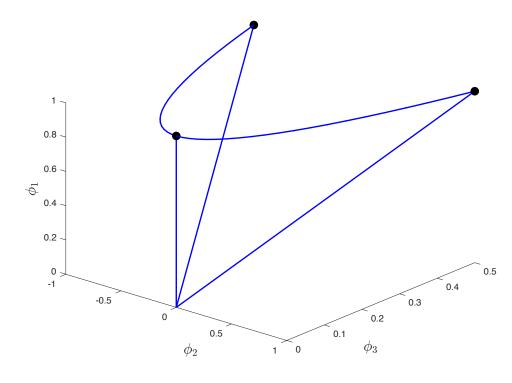


$$\Phi = \begin{bmatrix} 1 & -1 & 0.5 \\ 1 & 0 & 0 \\ 1 & 1 & 0.5 \end{bmatrix}$$

quadratic interpolation on 1D function

$$m(x) = \alpha_0 + \alpha_1 x + \frac{1}{2}\alpha_2 x^2$$





Cool, we just need to find the sample set with max $|\Phi|$,

but this intuition correct?

And what about Lagrange polynomial?

Definition 3.3. Given a set of interpolation points $Y = \{y^0, y^1, ..., y^p\}$, a basis of $p_1 = p+1$ polynomials $\ell_j(x)$, j = 0, ..., p, in \mathcal{P}_n^d is called a basis of Lagrange polynomials if

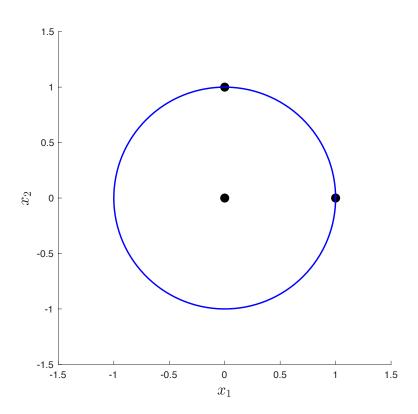
$$\ell_j(y^i) = \delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Lemma 3.4. If Y is poised, then the basis of Lagrange polynomials exists and is uniquely defined.

Lemma 3.5. For any function $f: \mathbb{R}^n \to \mathbb{R}$ and any poised set $Y = \{y^0, y^1, \dots, y^p\} \subset \mathbb{R}^n$, the unique polynomial m(x) that interpolates f(x) on Y can be expressed as

$$m(x) = \sum_{i=0}^{p} f(y^{i})\ell_{i}(x),$$

where $\{\ell_i(x), i = 0, ..., p\}$ is the basis of Lagrange polynomials for Y.



sample:
$$\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

$$\Phi = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \qquad \begin{array}{l} \leftarrow \phi(y_0)^T \\ \leftarrow \phi(y_1)^T \\ \leftarrow \phi(y_2)^T \end{array}$$

$$A^{T} = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{array}{l} \leftarrow l_{0}(x) = 1 - x_{1} - x_{2} \\ \leftarrow l_{1}(x) = 0 + x_{1} + 0 \\ \leftarrow l_{2}(x) = 0 + 0 + x_{2} \end{array}$$

Definition 3.3. Given a set of interpolation points $Y = \{y^0, y^1, ..., y^p\}$, a basis of $p_1 = p+1$ polynomials $\ell_j(x)$, j = 0, ..., p, in \mathcal{P}_n^d is called a basis of Lagrange polynomials if

$$\ell_j(y^i) = \delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

sample:
$$\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

$$\Phi = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \qquad \begin{array}{l} \leftarrow \phi(y_0)^T \\ \leftarrow \phi(y_1)^T \\ \leftarrow \phi(y_2)^T \end{array}$$

$$A^{T} = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{array}{l} \leftarrow l_{0}(x) = 1 - x_{1} - x_{2} \\ \leftarrow l_{1}(x) = 0 + x_{1} + 0 \\ \leftarrow l_{2}(x) = 0 + 0 + x_{2} \end{array}$$

Definition 3.3: $\Phi A = I$

Lemma 3.4. If Y is poised, then the basis of Lagrange polynomials exists and is uniquely defined.

sample:
$$\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

$$\Phi = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \qquad \begin{array}{l} \leftarrow \phi(y_0)^T \\ \leftarrow \phi(y_1)^T \\ \leftarrow \phi(y_2)^T \end{array}$$

$$A^{T} = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{array}{l} \leftarrow l_{0}(x) = 1 - x_{1} - x_{2} \\ \leftarrow l_{1}(x) = 0 + x_{1} + 0 \\ \leftarrow l_{2}(x) = 0 + 0 + x_{2} \end{array}$$

Lemma 3.4:

If Φ is nonsingular, A is unique.

Lemma 3.5. For any function $f: \mathbb{R}^n \to \mathbb{R}$ and any poised set $Y = \{y^0, y^1, \dots, y^p\} \subset \mathbb{R}^n$, the unique polynomial m(x) that interpolates f(x) on Y can be expressed as

$$m(x) = \sum_{i=0}^{p} f(y^{i})\ell_{i}(x),$$

where $\{\ell_i(x), i = 0, ..., p\}$ is the basis of Lagrange polynomials for Y.

sample:
$$\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

$$\Phi = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \qquad \begin{array}{l} \leftarrow \phi(y_0)^T \\ \leftarrow \phi(y_1)^T \\ \leftarrow \phi(y_2)^T \end{array}$$

$$A^{T} = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{array}{l} \leftarrow l_{0}(x) = 1 - x_{1} - x_{2} \\ \leftarrow l_{1}(x) = 0 + x_{1} + 0 \\ \leftarrow l_{2}(x) = 0 + 0 + x_{2} \end{array}$$

Lemma 3.5:

$$m(x) = \phi(x)^T A \vec{f}$$
, because $\Phi \alpha = \vec{f}$, $\alpha = \Phi^{-1} \vec{f} = A \vec{f}$, $m(x) = \phi(x)^T \alpha$

$$\Phi A = I$$

$$A\Phi = I$$

$$\phi(x)^T A\Phi = \phi(x)^T$$

$$l(x)^T \Phi = \phi(x)^T$$

$$\sum_{i=0}^{p} l_i(x)\phi(y_i) = \phi(x)$$

The $|l_i(x)|$ measures how well the sample set spans $\{\phi(x)|x \text{ in the trust region}\}$

$$l(x)^T \Phi = \phi(x)^T$$

$$\Phi^T l(x) = \phi(x)$$
 By Cramer's Rule: $l_i(x) = \frac{\left|\Phi_{(i)}^T\right|}{\left|\Phi^T\right|}$, which is volume when i th point is replaced with x volume of the original sample set

$$\Lambda = \max_{0 \le i \le p} \max_{x \in TR} |l_i(x)|$$

 Λ is a measure of poisedness, and the volume can be increased by a factor of Λ if we replace y_i with x.

The Theory

Write f in the form of its Taylor expansion about x:

$$f(y_i) = f(x) + \nabla f(x)(y_i - x) + \frac{1}{2!} \nabla^2 f(x)(y_i - x)^2 + \frac{1}{3!} \nabla^3 f(x)(y_i - x)^3 + \cdots,$$

where $\nabla^3 f(x)(y_i - x)^3$ means the inner product of $\nabla^3 f(x)$ and three $(y_i - x)$ vectors.

Let t be the dth order tylor expansion of f:

$$t(y_i) = f(x) + \nabla f(x)(y_i - x) + \dots + \frac{1}{d!} \nabla^d f(x)(y_i - x)^d.$$

The Taylor series with explicit remainder gives

$$|(f-t)(y_i)| = \frac{1}{(d+1)!} \nabla^{d+1} f(\xi) (y_i - x)^{d+1}$$

for some $\xi = \beta(y_i - x)$ with some $\beta \in [0, 1]$. If $\nabla^d f$ is L_d Lipschitz continuous, then $\|\nabla^{d+1} f(\xi)\| \leq L_d$ and

$$|(f-t)(y_i)| \le \frac{L_d}{(d+1)!} ||y_i - x||^{d+1}.$$

$$|(f-t)(y_i)| \le \frac{L_d}{(d+1)!} ||y_i - x||^{d+1}.$$

Then for any $0 \le r \le d$

$$\|\nabla^{r} m(x) - \nabla^{r} f(x)\|$$

$$= \|\nabla^{r} (m - t)(x) - \nabla^{r} (f - t)(x)\|$$

$$= \|\nabla^{r} (m - t)(x)\|$$

$$= \left\|\sum_{i=0}^{p} (f - t)(y_{i}) \nabla^{r} l_{i}(x)\right\|$$

$$\leq \sum_{i=0}^{p} |(f - t)(y_{i})| \cdot \|\nabla^{r} l_{i}(x)\|$$

$$\leq \sum_{i=0}^{p} \frac{L_{d}}{(d+1)!} \|\nabla^{r} l_{i}(x)\| \|y_{i} - x\|^{d+1}.$$

Let r = 0, d = 2 and we have

$$|m(x) - f(x)|$$

$$\leq \sum_{i=0}^{p} \frac{L_2}{6} |l_i(x)| \cdot ||y_i - x||^3$$

$$\leq p \frac{L_2}{6} \Lambda (2\Delta)^3$$

where Δ is the radius of the trust region.