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Unconstrained optimization — a “mature” area?

Nonconvex local unconstrained optimization:

minimize f(xz) where f e Cc'(R™) or C?(IR™).
xeR"™

Currently two main competing methodologies:
m Linesearch methods

® Trust-region methods

to globalize gradient and (approximate) Newton steps.
Much reliable, efficient software for (large-scale) problems.

Is there anything more to say?...
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Unconstrained optimization — a “mature” area?

Nonconvex local unconstrained optimization:

minimize f(xz) where f e Cc'(R™) or C?(IR™).
xeR"™

Currently two main competing methodologies:
m Linesearch methods
® Trust-region methods

to globalize gradient and (approximate) Newton steps.
Much reliable, efficient software for (large-scale) problems.

Is there anything more to say?...
m Global rates of convergence of optimization algorithms

<= Evaluation complexity of methods (from any initial guess)

[well-studied for convex problems, but unprecedented for nonconvex until recently]
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Evaluation complexity of unconstrained optimization

Relevant analyses of iterative optimization algorithms:

m Global convergence to first/second-order critical points
(from any initial guess)

m Local convergence and local rates (sufficiently close initial
guess, well-behaved minimizer)

[Newton’s method: Q-quadratic; steepest descent: linear]
m Global rates of convergence (from any initial guess)
<= Worst-case function evaluation complexity

evaluations are often expensive in practice (climate
modelling, molecular simulations, etc)

black-box/oracle computational model (suitable for the
different ‘shapes and sizes’ of nonlinear problems)
[Nemirovskii & Yudin ('83); Vavasis ('92), Sikorski ('01), Nesterov ('04)]
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Overview

m Evaluation complexity of standard methods
®m Improved complexity for cubic regularization

m Regularization - and other methods - with only
occasionally accurate information
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Global efficiency of steepest-descent methods

Steepest descent method (with linesearch or trust-region):
mf c c'(IR™) with Lipschitz continuous gradient.

B to generate gradient ||g(z)|| < €, requires at most
[Nesterov ('04); Gratton, Sartenaer & Toint ('08)]

(ks - Lips, « (f(xo0) — fiow) - € ?] function evaluations.
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Global efficiency of steepest-descent methods

Steepest descent method (with linesearch or trust-region):
mf c c'(IR™) with Lipschitz continuous gradient.

B to generate gradient ||g(z)|| < €, requires at most
[Nesterov ('04); Gratton, Sartenaer & Toint ('08)]

(ks - Lips, « (f(xo0) — fiow) - € ?] function evaluations.

The worst-case bound is sharp for steepest descent: [ccT(10)]

For any ¢« >0 and = > o0, L —
(inexact-linesearch) steep-

est descent applied to this

f takes precisely

The obj
— /
The gradient

{e_2+ﬂ function evaluations

to generate |g(x)| < e.
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0
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Worst-case bound is sharp for steepest descent

Steepest descent method with exact linesearch

B =xr — org(xr) With a; = arg ming >g f(zr — ag(xk))

B takes [¢—217] iterations to generate ||g(zx)|| < €

-0.51
-1+
!
0 0.5

Contour lines of f(x1,x2) and path of iterates.
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Global efficiency of Newton’s method

m Newton’s method:  zpy 1 = =, — H, ‘g With H}, = 0.
Newton’s method: as slow as steepest descent

B may require [e—2*7| evaluations/iterations, same as steepest
descent method
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Globally Lipschitz continuous gradient and Hessian
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Worst-case bound for Newton’s method

® when globalized with trust-region or linesearch, Newton’s
method will take at most

e

evaluations to generate ||gx|| < e

m similar worst-case complexity for classical trust-region and
linesearch methods

Is there any method with better evaluation complexity than
steepest-descent?
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Improved complexity for cubic
regularization
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Improved complexity for cubic regularization

A cubic model: [Griewank (81, TR), Nesterov & Polyak ('06), Weiser et al ('07)]

H 1s globally Lipschitz continuous with Lipschitz constant 2o
Taylor, Cauchy-Schwarz and Lipschitz —-

flxr+s) < flzr) +5 g(ze) + 3" H(zi)s + 3ollsll;

my(s)
— reducing m,; from s = 0 decreases f since my(0) = f(xx).
Cubic regularization method: [Nesterov & Polyak ('06)]

B xp, 1 =2+ Sk
B compute s, — min, my(s) globally: [tractable, even if m,, nonconvext]

ATI| Scoping Workshop: Edinburgh — p. 10/28



Improved complexity for cubic regularization

A cubic model: [Griewank (81, TR), Nesterov & Polyak ('06), Weiser et al ('07)]

H 1s globally Lipschitz continuous with Lipschitz constant 2o
Taylor, Cauchy-Schwarz and Lipschitz —-

flxr+s) < flzr) +5 g(ze) + 3" H(zi)s + 3ollsll;

my(s)
— reducing m,; from s = 0 decreases f since my(0) = f(xx).
Cubic regularization method: [Nesterov & Polyak ('06)]

W ryi1=xr+ Sk
B compute s, — min, my(s) globally: [tractable, even if m,, nonconvext]

Worst-case evaluation complexity: at most [« - e=3/2]
function evaluations to ensure ||g(z)|| < €.  [Nesterov & Polyak ('06)]

Can we make cubic regularization computationally efficient ?
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Adaptive cubic regularization — a practical method

Use [C, Gould & Toint (CGT): Math Programming (2011) ]

B cubic regularization model at x,

mi(s) = f(zk) + s g(xk) + 35" Bis + toulls|’

or > 0 IS the iteration-dependent regularization weight
By, IS an approximate Hessian
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Adaptive cubic regularization — a practical method

Use [C, Gould & Toint (CGT): Math Programming (2011) ]

B cubic regularization model at x,

mi(s) = f(zk) + s g(xk) + 35" Bis + toulls|’

or > 0 IS the iteration-dependent regularization weight
By, IS an approximate Hessian

B compute s; ~ arg ming mg(s) [details to follow]

f(xr) — f(zr + sk)
f(xr) — mg(sk)

xr +s If pp>n=0.1
T otherwise

B compute p, =

H set Tpt1 = {

Bopi1 = O'k/’y — 201} when Pr < 1, else oi+1 = max{v0k, Omin}
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Adaptive Regularization with Cubics (ARC)

ARC: s; =global min of m.(s) over s € S < IR", withge 8
— Increase subspaces to satisfy termination criteria:
[V smg(sk)l| < min(1, [[sk])||gx |l

ARC has excellent convergence properties: globally, to
second-order critical points and locally, Q-quadratically.
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Adaptive Regularization with Cubics (ARC)

ARC: s; =global min of m.(s) over s € S < IR", withge 8
— Increase subspaces to satisfy termination criteria:
[V smg(sk)l| < min(1, [[sk])||gx |l

ARC has excellent convergence properties: globally, to
second-order critical points and locally, Q-quadratically.

Performance Profile: iteration count — 131 CUTEr problems
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Worst-case performance of ARC

If i Is Lipschitz continuous on iterates’ path and
(B, — Hi)sil| = O(||sk||?)™*), then ARC requires at most

|7K1arc * LH

(V][]

+ (f(xo) — frow) * e_ﬂ function evaluations

to ensure ||g|| < e. [cf. Nesterov & Polyak]

(=) achievable when By, = Hj;, or when By is computed by gradient finite differences
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Worst-case performance of ARC

If i Is Lipschitz continuous on iterates’ path and
(B, — Hi)sil| = O(||sk||?)™*), then ARC requires at most

|7K1arc * LH

(V][]

+ (f(xo) — frow) * e_ﬂ function evaluations

to ensure ||g|| < e. [cf. Nesterov & Polyak]

(=) achievable when By, = Hj;, or when By is computed by gradient finite differences

Key ingredients:
m sufficient function decrease: f(xzx) — f(zrt+1) > DLok|sel®
[Iocal, approximate model minimization is sufficient here]

m long successful steps: ||sk]| > Cllgr+1]|z2 (AN o > omin > 0)

— While ||gx|| > ¢ and k successful,
f(@r) — f(@rt1) 2 G ominC - €
summing up over k successful:  f(xzo) — fiow > ks 12ZminCe

N[Co

N[O
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Cubic regularization: worst-case bound is optimal

Sharpness: for any e > 0 and = > 0, to generate |g(zw)| < ,
cubic regularization/ARC applied to this 5 takes precisely

{e_%‘kﬂ function evaluations
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ARC'’s worst-case bound is optimal within a large class of
second-order methods for £ with Lipschitz continuous H.[ccT11]
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Second-order optimality complexity bounds

B O(e—32) evaluations for ARC and trust-region to ensure
both ||g.|| < e and Apin(Br) > —e. [ceT12]

m this bound is tight for each method.

The gradient g. The Hessian H.
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Reqgularization methods with only
occasionally accurate models
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Probabilistic local models and methods

Context/purpose: f € C* or f € C? but derivatives are
Inaccurate/impossible/expensive to compute.

m Use model-based derivative-free optimization algorithms

® Models may be “good”/ “sufficiently accurate” only with
certain probability, for example:

—— models based on random sampling of function values
(within a ball)

— finite-difference schemes in parallel, with total
probability of any processor failing less than 0.5

m Consider cubic regularization local models with
approximate first and second derivatives.

m Expected number of iterations to generate sufficiently
small ‘true’ gradients?
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Probabilistic ARC

In the ARC framework, each (realization of) the cubic
regularization model [C & Scheinberg, 2015]
mi(s) = f(xk) + 7 g + 187 bis + Lo s||?

Random model/variable M, — my (wy) realization;
random vars X, Sk, X — xk, sk, o realizations
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Probabilistic ARC

In the ARC framework, each (realization of) the cubic
regularization model [C & Scheinberg, 2015]
mi(s) = f(xk) + 7 g + 187 bis + Lo s||?

Random model/variable M, — my (wy) realization;
random vars X, Sk, X — xk, sk, o realizations

{M;.} IS (p)-probabilistically ‘sufficiently accurate’ for P-ARC if
for {=k, X1}, the events

I = {{IVf(Xk)—Gill < rglISkll* & |(H(Xk)—Bu)Skll < kullSkll*}

hold with probability at least p (conditioned on the past).
I, occurs — k true iteration; otherwise, false.
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Probabllistic ARC - complexity

If V£(z) and H are Lipschitz continuous, then the expected
number of iterations that P-ARC takes until |V f(z*)|| < €
satisfies

(V][eY

E(N,) <

-~ 2p _1 * K/p—arc ° (f(wO) — flow) - €

provided the probability of sufficiently accurate models is p > 2.

Analysis

m Four types of iterations (successful, unsuccessful, true
and false)

m Analysis of joint stochastic processes {2, F(zo) — F (X&)}
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Probabilistic ARC - analysis

Let N, hitting time for ||V £(X*)|| < €
Measure of progress towards optimality: F, = £f(X°%) — f(XF)
AS Frp1 < Fr & F, < F. = f(X°) — fiow: E(INe) < E(Tg").

m If £ IS a true and successful iteration, then
Je+1 2 fr + IV f (211|372

(max{og,o.})3/2

and Ok+1 — maX{'YO'ka O'min}

mIf o1, > 0., and iteration k& Is true, then it is also successful.
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Probabilistic ARC - analysis

Let N, hitting time for ||V £(X*)|| < €
Measure of progress towards optimality: F, = £f(X°%) — f(XF)
AS Frp1 < Fr & F, < F. = f(X°) — fiow: E(INe) < E(Tg").

m If £ IS a true and successful iteration, then
Je+1 2 fr + IV f (211|372

(max{og,o.})3/2

and Ok+1 = Max{Yok, Omin}
mIf o1, > 0., and iteration k& Is true, then it is also successful.

Split iterations into K’ = {k : o), > 0.} and K" = {k : o, < o.};
analyze joint stochastic processes {3, F.} fork € K’ and k£ € K”.

Over K’: o4 IS a random walk (goes 'up’ w.p. 1 — p; 'down’ w.p. p).

Hence o4, = 0. ON average every ;- iterations.

3
F}, increases by « (7) * on average every __L_ iterations.

2p
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Linesearch methods with occasionally
accurate models
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A probabilistic linesearch method

Initialization: Choose parameters ~,n € (0,1). At iteration k, do:

B (Model and step calculation) Compute random model
my(s) = f(zx) + sTgr and use it to generate direction gy.
Set S — —OrJgk-

f(xr) — f(xr + sk) >
f(xr) — me(sk) —

[this Is equivalent to the Armijo condition]

m (Sufficient decrease) Check if p, =

m (Successful step) If p,, > 7, set
Tpt+1 = Tk + Sk and artr1 = min{y tag, max }-
m (Unsuccessful step) Else, set
Trt1 = Tk and Op+1 = YO. U

More general models m,; and directions d, possible.
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A Probabilistic LineSearch (P-LS) method

The model {M,} IS (p)-probabilistically ‘sufficiently accurate’
for P-LS If for corresponding {Ax, X}, the events

I = {IVf(Xk) = Gi|l| < kg Aw||Gr|l}

hold with probability at least p (conditioned on the past).
I, occurs — k true iteration; otherwise, false.

Complexity: If v £ is Lipschitz continuous, then the expected
number of iterations that P-LS takes until ||V £(z*)| < €
satisfies

° Kfp—ls * (f(mO) - .flow) * 6_2

provided the probability of sufficiently accurate models is p > 3.
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P-LS method - complexity for special cases

f convex with bounded level sets: the expected number of
iterations that P-LS takes until f(z*) — fiow < €IS

E(N,) < -1

= zp_]_'M’p—ls—c'-ljz’6

1
f(Xk:) - flow

F,
measure of progress: Fj, = , E(Ne) = E(TE_’“I).

f strongly convex: the expected number of iterations that
P-LS takes until f(z*) — fiow < €S

E(Ne) S *Kpls—cc * — ° log(€_1)°
2p — 1 u

1

' E(Ne) = E(T5*) where F. = log L.
f(Xk) - flow Fe €

measure of progress: Fj, — log
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A generic algorithmic framework

Initialization: Choose a class of (possibly random) models
my, and parameters v,n € (0,1). At iteration &, do:

® (Model and step calculation) Compute m,, of f around z,;
and s, = sy (ay) to reduce my(s).

m (Sufficient decrease) Check if

o — f(xr) — f(xr + sk) >
CT F@e) —m(sk) T

m (Successful step) If p,, > 7, set

Tpt+1 = Tk + Sk and arr1 = min{y tag, dmax }-

®m (Unsuccessful step) Else, set
Lr+1 — Tk and X1 = YO []

Examples: linesearch methods (s, = aid;); adaptive
regularization (o, = 1/0}); trust-region.
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A generic algorithmic framework...

{M;.} IS (p)-probabilistically ‘sufficiently accurate’ for P-Alg:
I,={ M, ‘sufficiently accurate’ | A, and X;} holds with prob. p.

I, occurs —s k true iteration: otherwise, false.

Assumption: P-Alg construction and M, probabilistically
accurate must ensure: there exists C > 0 s.t. if o, < C and
iteration k Is true then k is also successful. Hence

A1 = min{v_lakzaamax} and fk—l—l 2 fk + h(ak:)

Result: For P-Alg with (p)-probabilistically accurate models,
the expected number of iterations to reach desired accuracy
can be founded as follows

Fe
E(N.) <  Kp—_alg
(Ne) < 5 =1 " Fris " iy

where p > 7 and F. > F, total function decrease.
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Generating (p)-sufficiently accurate models

m Stochastic gradient and batch sampling Byrd et al, 2012]

IV fs,. (") = V(@) < pllVfs, (*)

with p € (0,1) and fixed, sufficiently small a.

® Models formed by sampling of function values in a ball
B(z, Ar) (Mmodel-based dfo)
M, (p)-fully linear model: if the event

I} = {|IVF(X*) — G*|| < kgA}

holds at least w.p. p (conditioned on the past).
M, (p)-fully quadratic model: if the event

I = {|VA(X*)—G¥|| < kgA] and ||H(X*)—B¥|| < kuAy}
holds at least w.p. p (conditioned on the past).
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Conclusions and future directions

Some results not covered (but existent/in progress):
m high-order adaptive regularization methods: [Birgin et al. (15)]
(o
mu(s) = Tp-1(@s 8) + - sll”

where T,_,(z, s) (p-1)-order Taylor polynomial of f.

Complexity: O(e~7-7) to ensure ||g(zk)|| < € [approx, local model min]
Complexity of pth order criticality? [in progress]

B Complexity of constrained optimization (with convex,
nonconvex constraints): for carefully devised methods, it
IS the same as for the unconstrained case [CGT (12,16)]

m Optimization with occasionally accurate models:

second-order criticality (in progress)

stochastic function values - trust-region approach [Arxiv,
with Blanchet, Meninckelly, Scheinberg’16]
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