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Unconstrained optimization — a “mature” area?

Nonconvex local unconstrained optimization:

minimize
x∈IRn

f(x) where f ∈ C1(IRn
) or C2(IRn

).

Currently two main competing methodologies:
Linesearch methods

Trust-region methods

to globalize gradient and (approximate) Newton steps.
Much reliable, efficient software for (large-scale) problems.

Is there anything more to say?...
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Unconstrained optimization — a “mature” area?

Nonconvex local unconstrained optimization:

minimize
x∈IRn

f(x) where f ∈ C1(IRn
) or C2(IRn

).

Currently two main competing methodologies:
Linesearch methods

Trust-region methods

to globalize gradient and (approximate) Newton steps.
Much reliable, efficient software for (large-scale) problems.

Is there anything more to say?...

Global rates of convergence of optimization algorithms

⇐⇒ Evaluation complexity of methods (from any initial guess)
[well-studied for convex problems, but unprecedented for nonconvex until recently]
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Evaluation complexity of unconstrained optimization

Relevant analyses of iterative optimization algorithms:

Global convergence to first/second-order critical points
(from any initial guess)

Local convergence and local rates (sufficiently close initial
guess, well-behaved minimizer)

[Newton’s method: Q-quadratic; steepest descent: linear]

Global rates of convergence (from any initial guess)
⇐⇒ Worst-case function evaluation complexity

evaluations are often expensive in practice (climate
modelling, molecular simulations, etc)
black-box/oracle computational model (suitable for the
different ‘shapes and sizes’ of nonlinear problems)

[Nemirovskii & Yudin (’83); Vavasis (’92), Sikorski (’01), Nesterov (’04)]
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Overview

Evaluation complexity of standard methods

Improved complexity for cubic regularization

Regularization - and other methods - with only
occasionally accurate information
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Global efficiency of steepest-descent methods

Steepest descent method (with linesearch or trust-region):

f ∈ C1(IRn
) with Lipschitz continuous gradient.

to generate gradient ‖g(xk)‖ ≤ ǫ, requires at most
[Nesterov (’04); Gratton, Sartenaer & Toint (’08)]

⌈
κsd · Lipsg · (f(x0) − flow) · ǫ−2

⌉
function evaluations.
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Global efficiency of steepest-descent methods

Steepest descent method (with linesearch or trust-region):

f ∈ C1(IRn
) with Lipschitz continuous gradient.

to generate gradient ‖g(xk)‖ ≤ ǫ, requires at most
[Nesterov (’04); Gratton, Sartenaer & Toint (’08)]

⌈
κsd · Lipsg · (f(x0) − flow) · ǫ−2

⌉
function evaluations.

The worst-case bound is sharp for steepest descent: [CGT(’10)]

For any ǫ > 0 and τ > 0,
(inexact-linesearch) steep-
est descent applied to this
f takes precisely
⌈
ǫ−2+τ

⌉
function evaluations

to generate |g(xk)| ≤ ǫ.
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Worst-case bound is sharp for steepest descent

Steepest descent method with exact linesearch

xk+1 = xk − αkg(xk) with αk = argminα≥0 f(xk − αg(xk))

takes
⌈
ǫ−2+τ

⌉
iterations to generate ‖g(xk)‖ ≤ ǫ
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Global efficiency of Newton’s method

Newton’s method: xk+1 = xk − H−1
k gk with Hk ≻ 0.

Newton’s method: as slow as steepest descent

may require
⌈
ǫ−2+τ

⌉
evaluations/iterations, same as steepest

descent method
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Worst-case bound for Newton’s method

when globalized with trust-region or linesearch, Newton’s
method will take at most

⌈
κNǫ−2

⌉

evaluations to generate ‖gk‖ ≤ ǫ

similar worst-case complexity for classical trust-region and
linesearch methods

Is there any method with better evaluation complexity than
steepest-descent?
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Improved complexity for cubic

regularization
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Improved complexity for cubic regularization

A cubic model: [Griewank (’81, TR), Nesterov & Polyak (’06), Weiser et al (’07)]

H is globally Lipschitz continuous with Lipschitz constant 2σ:
Taylor, Cauchy-Schwarz and Lipschitz =⇒

f(xk + s) ≤ f(xk) + sT g(xk) + 1

2
sTH(xk)s + 1

3
σ‖s‖3

2
︸ ︷︷ ︸

mk(s)

=⇒ reducing mk from s = 0 decreases f since mk(0) = f(xk).

Cubic regularization method: [Nesterov & Polyak (’06)]

xk+1 = xk + sk

compute sk −→mins mk(s) globally: [tractable, even if mk nonconvex!]
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Improved complexity for cubic regularization

A cubic model: [Griewank (’81, TR), Nesterov & Polyak (’06), Weiser et al (’07)]

H is globally Lipschitz continuous with Lipschitz constant 2σ:
Taylor, Cauchy-Schwarz and Lipschitz =⇒

f(xk + s) ≤ f(xk) + sT g(xk) + 1

2
sTH(xk)s + 1

3
σ‖s‖3

2
︸ ︷︷ ︸

mk(s)

=⇒ reducing mk from s = 0 decreases f since mk(0) = f(xk).

Cubic regularization method: [Nesterov & Polyak (’06)]

xk+1 = xk + sk

compute sk −→mins mk(s) globally: [tractable, even if mk nonconvex!]

Worst-case evaluation complexity: at most
⌈
κcr · ǫ

−3/2
⌉

function evaluations to ensure ‖g(xk)‖ ≤ ǫ. [Nesterov & Polyak (’06)]

Can we make cubic regularization computationally efficient ?
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Adaptive cubic regularization – a practical method

Use [C, Gould & Toint (CGT): Math Programming (2011) ]

cubic regularization model at xk

mk(s) ≡ f(xk) + sT g(xk) + 1
2
sTBks + 1

3
σk‖s‖

3

σk > 0 is the iteration-dependent regularization weight

Bk is an approximate Hessian

ATI Scoping Workshop: Edinburgh – p. 11/28



Adaptive cubic regularization – a practical method

Use [C, Gould & Toint (CGT): Math Programming (2011) ]

cubic regularization model at xk

mk(s) ≡ f(xk) + sT g(xk) + 1
2
sTBks + 1

3
σk‖s‖

3

σk > 0 is the iteration-dependent regularization weight

Bk is an approximate Hessian

compute sk ≈ argmins mk(s) [details to follow]

compute ρk =
f(xk) − f(xk + sk)

f(xk) − mk(sk)

set xk+1 =

{

xk + sk if ρk > η = 0.1

xk otherwise

σk+1 = σk/γ = 2σk when ρk < η; else σk+1 = max{γσk, σmin}
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Adaptive Regularization with Cubics (ARC)

ARC: sk =global min of mk(s) over s ∈ S ≤ IRn, with g ∈ S

−→ increase subspaces to satisfy termination criteria:
‖∇smk(sk)‖ ≤ min(1, ‖sk‖)‖gk‖

ARC has excellent convergence properties: globally, to
second-order critical points and locally, Q-quadratically.
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Adaptive Regularization with Cubics (ARC)

ARC: sk =global min of mk(s) over s ∈ S ≤ IRn, with g ∈ S

−→ increase subspaces to satisfy termination criteria:
‖∇smk(sk)‖ ≤ min(1, ‖sk‖)‖gk‖

ARC has excellent convergence properties: globally, to
second-order critical points and locally, Q-quadratically.

‘Average-case’ performance
of ARC variants
(preliminary numerics)
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Performance Profile: iteration count − 131 CUTEr problems

ARC − g stopping rule (3 failures)
ARC − s stopping rule (3 failures)
ARC − s/σ stopping rule (3 failures)
trust−region (8 failures)

ATI Scoping Workshop: Edinburgh – p. 12/28



Worst-case performance of ARC

If H is Lipschitz continuous on iterates’ path and
‖(Bk − Hk)sk‖ = O(‖sk‖

2)(∗), then ARC requires at most
⌈

κarc · LH
3

2 · (f(x0) − flow) · ǫ−
3

2

⌉

function evaluations

to ensure ‖gk‖ ≤ ǫ. [cf. Nesterov & Polyak]
(∗) achievable when Bk = Hk or when Bk is computed by gradient finite differences
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Worst-case performance of ARC

If H is Lipschitz continuous on iterates’ path and
‖(Bk − Hk)sk‖ = O(‖sk‖

2)(∗), then ARC requires at most
⌈

κarc · LH
3

2 · (f(x0) − flow) · ǫ−
3

2

⌉

function evaluations

to ensure ‖gk‖ ≤ ǫ. [cf. Nesterov & Polyak]
(∗) achievable when Bk = Hk or when Bk is computed by gradient finite differences

Key ingredients:

sufficient function decrease: f(xk) − f(xk+1) ≥ η1

6
σk‖sk‖

3

[local, approximate model minimization is sufficient here]

long successful steps: ‖sk‖ ≥ C‖gk+1‖
1

2 (and σk ≥ σmin > 0)

=⇒ while ‖gk‖ ≥ ǫ and k successful,
f(xk) − f(xk+1) ≥ η1

6
σminC · ǫ

3

2

summing up over k successful: f(x0) − flow ≥ kS
η1σminC

6
ǫ

3

2
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Cubic regularization: worst-case bound is optimal

Sharpness: for any ǫ > 0 and τ > 0, to generate |g(xk)| ≤ ǫ,
cubic regularization/ARC applied to this f takes precisely

⌈

ǫ−
3

2
+τ

⌉

function evaluations
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ARC’s worst-case bound is optimal within a large class of
second-order methods for f with Lipschitz continuous H.[CGT’11]
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Second-order optimality complexity bounds

O(ǫ−3) evaluations for ARC and trust-region to ensure
both ‖gk‖ ≤ ǫ and λmin(Bk) ≥ −ǫ. [CGT’12]

this bound is tight for each method.
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Regularization methods with only

occasionally accurate models
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Probabilistic local models and methods

Context/purpose: f ∈ C1 or f ∈ C2 but derivatives are
inaccurate/impossible/expensive to compute.

Use model-based derivative-free optimization algorithms

Models may be “good”/ “sufficiently accurate” only with
certain probability, for example:
−→ models based on random sampling of function values

(within a ball)

−→ finite-difference schemes in parallel, with total

probability of any processor failing less than 0.5

Consider cubic regularization local models with
approximate first and second derivatives.

Expected number of iterations to generate sufficiently
small ‘true’ gradients?
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Probabilistic ARC

In the ARC framework, each (realization of) the cubic
regularization model [C & Scheinberg, 2015]

mk(s) = f(xk) + sT gk + 1

2
sT bks + 1

3
σk‖s‖

3

has gk ≈ ∇f(xk) and bk ≈ H(xk).

Random model/variable Mk −→ mk(ωk) realization;
random vars Xk, Sk,Σk −→ xk, sk, σk realizations
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Probabilistic ARC

In the ARC framework, each (realization of) the cubic
regularization model [C & Scheinberg, 2015]

mk(s) = f(xk) + sT gk + 1

2
sT bks + 1

3
σk‖s‖

3

has gk ≈ ∇f(xk) and bk ≈ H(xk).

Random model/variable Mk −→ mk(ωk) realization;
random vars Xk, Sk,Σk −→ xk, sk, σk realizations

{Mk} is (p)-probabilistically ‘sufficiently accurate’ for P-ARC if
for {Σk, Xk}, the events

Ik = {‖∇f(Xk)−Gk‖ ≤ κg‖Sk‖
2 & ‖(H(Xk)−Bk)Sk‖ ≤ κH‖Sk‖

2}

hold with probability at least p (conditioned on the past).
Ik occurs −→ k true iteration; otherwise, false.
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Probabilistic ARC - complexity

If ∇f(x) and H are Lipschitz continuous, then the expected
number of iterations that P-ARC takes until ‖∇f(xk)‖ ≤ ǫ

satisfies

E(Nǫ) ≤
1

2p − 1
· κp−arc · (f(x0) − flow) · ǫ−

3

2

provided the probability of sufficiently accurate models is p > 1
2
.

Analysis

Four types of iterations (successful, unsuccessful, true
and false)

Analysis of joint stochastic processes {Σk, F (x0) − F (Xk)}
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Probabilistic ARC - analysis

Let Nǫ hitting time for ‖∇f(Xk)‖ ≤ ǫ

Measure of progress towards optimality: Fk = f(X0) − f(Xk)

As Fk+1 ≤ Fk & Fk ≤ F∗ = f(X0) − flow: E(Nǫ) ≤ E(T Fk

F∗

).

If k is a true and successful iteration, then
fk+1 ≥ fk +

κ

(max{σk, σc})3/2
‖∇f(xk+1)‖3/2

and σk+1 = max{γσk, σmin}

If σk ≥ σc, and iteration k is true, then it is also successful.
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Probabilistic ARC - analysis

Let Nǫ hitting time for ‖∇f(Xk)‖ ≤ ǫ

Measure of progress towards optimality: Fk = f(X0) − f(Xk)

As Fk+1 ≤ Fk & Fk ≤ F∗ = f(X0) − flow: E(Nǫ) ≤ E(T Fk

F∗

).

If k is a true and successful iteration, then
fk+1 ≥ fk +

κ

(max{σk, σc})3/2
‖∇f(xk+1)‖3/2

and σk+1 = max{γσk, σmin}

If σk ≥ σc, and iteration k is true, then it is also successful.

Split iterations into K′ = {k : σk > σc} and K′′ = {k : σk ≤ σc};
analyze joint stochastic processes {Σk, Fk} for k ∈ K′ and k ∈ K′′.

Over K′: σk is a random walk (goes ’up’ w.p. 1 − p; ’down’ w.p. p).
Hence σk = σc on average every 1

2p−1
iterations.

Fk increases by κ
(

ǫ
σc

) 3

2 on average every 1
2p−1

iterations.
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Linesearch methods with occasionally

accurate models
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A probabilistic linesearch method

Initialization: Choose parameters γ, η ∈ (0, 1). At iteration k, do:

(Model and step calculation) Compute random model
mk(s) = f(xk) + sT gk and use it to generate direction gk.
Set sk = −αkgk.

(Sufficient decrease) Check if ρk =
f(xk) − f(xk + sk)

f(xk) − mk(sk)
≥ η

[this is equivalent to the Armijo condition]

(Successful step) If ρk ≥ η, set
xk+1 = xk + sk and αk+1 = min{γ−1αk, αmax}.

(Unsuccessful step) Else, set
xk+1 = xk and αk+1 = γαk. �

More general models mk and directions dk possible.
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A Probabilistic LineSearch (P-LS) method

The model {Mk} is (p)-probabilistically ‘sufficiently accurate’
for P-LS if for corresponding {Ak, Xk}, the events

Ik = {‖∇f(Xk) − Gk‖ ≤ κgAk‖Gk‖}

hold with probability at least p (conditioned on the past).
Ik occurs −→ k true iteration; otherwise, false.

Complexity: If ∇f is Lipschitz continuous, then the expected
number of iterations that P-LS takes until ‖∇f(xk)‖ ≤ ǫ

satisfies

E(Nǫ) ≤
1

2p − 1
· κp−ls · (f(x0) − flow) · ǫ−2

provided the probability of sufficiently accurate models is p > 1
2
.
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P-LS method - complexity for special cases

f convex with bounded level sets: the expected number of
iterations that P-LS takes until f(xk) − flow ≤ ǫ is

E(Nǫ) ≤
1

2p − 1
· κp−ls−c · D

2 · ǫ−1.

measure of progress: Fk =
1

f(Xk) − flow

; E(Nǫ) = E(T
Fk

ǫ−1
).

f strongly convex: the expected number of iterations that
P-LS takes until f(xk) − flow ≤ ǫ is

E(Nǫ) ≤
1

2p − 1
· κpls−cc ·

L

µ
· log(ǫ−1).

measure of progress: Fk = log
1

f(Xk) − flow

; E(Nǫ) = E(T
Fk

Fǫ
) where Fǫ = log 1

ǫ
.
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A generic algorithmic framework

Initialization: Choose a class of (possibly random) models
mk; and parameters γ, η ∈ (0, 1). At iteration k, do:

(Model and step calculation) Compute mk of f around xk;
and sk = sk(αk) to reduce mk(s).

(Sufficient decrease) Check if

ρk =
f(xk) − f(xk + sk)

f(xk) − mk(sk)
≥ η

(Successful step) If ρk ≥ η, set
xk+1 = xk + sk and αk+1 = min{γ−1αk, αmax}.

(Unsuccessful step) Else, set
xk+1 = xk and αk+1 = γαk. �

Examples: linesearch methods (sk = αkdk); adaptive
regularization (αk = 1/σk); trust-region.
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A generic algorithmic framework...

{Mk} is (p)-probabilistically ‘sufficiently accurate’ for P-Alg:
Ik={ Mk ‘sufficiently accurate’ | Ak and Xk} holds with prob. p.
Ik occurs −→ k true iteration; otherwise, false.
Assumption: P-Alg construction and Mk probabilistically
accurate must ensure: there exists C > 0 s.t. if αk ≤ C and
iteration k is true then k is also successful. Hence
αk+1 = min{γ−1αk, αmax} and fk+1 ≥ fk + h(αk).

Result: For P-Alg with (p)-probabilistically accurate models,
the expected number of iterations to reach desired accuracy
can be founded as follows

E(Nǫ) ≤
1

2p − 1
· κp−alg ·

Fǫ

h(C)
,

where p > 1
2

and Fǫ ≥ Fk total function decrease.
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Generating (p)-sufficiently accurate models

Stochastic gradient and batch sampling [Byrd et al, 2012]

‖∇fSk
(xk) − ∇f(xk)‖ ≤ µ‖∇fSk

(xk)‖

with µ ∈ (0, 1) and fixed, sufficiently small αk.

Models formed by sampling of function values in a ball
B(xk,∆k) (model-based dfo)
Mk (p)-fully linear model: if the event

Il
k = {‖∇f(Xk) − Gk‖ ≤ κg∆k}

holds at least w.p. p (conditioned on the past).
Mk (p)-fully quadratic model: if the event

Iq
k = {‖∇f(Xk)−Gk‖ ≤ κg∆

2
k and ‖H(Xk)−Bk‖ ≤ κH∆k}

holds at least w.p. p (conditioned on the past).
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Conclusions and future directions

Some results not covered (but existent/in progress):

high-order adaptive regularization methods: [Birgin et al. (’15)]

mk(s) = Tp−1(xk, s) +
σk

p
‖s‖p

where Tp−1(xk, s) (p-1)-order Taylor polynomial of f .
Complexity: O(ǫ−

p

p−1 ) to ensure ‖g(xk)‖ ≤ ǫ [approx, local model min]
Complexity of pth order criticality? [in progress]

Complexity of constrained optimization (with convex,
nonconvex constraints): for carefully devised methods, it
is the same as for the unconstrained case [CGT (’12,’16)]

Optimization with occasionally accurate models:
second-order criticality (in progress)
stochastic function values - trust-region approach [Arxiv,

with Blanchet, Meninckelly, Scheinberg’16]
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