Global rates of convergence of algorithms for nonconvex smooth optimization

Coralia Cartis (University of Oxford)

joint with

Nick Gould (RAL, UK) & Philippe Toint (Namur, Belgium) Katya Scheinberg (Lehigh, USA)

ICML Workshop on Optimization Methods for the Next Generation of Machine Learning ICML New York City, June 23–24, 2016

Unconstrained optimization — a "mature" area?

Nonconvex local unconstrained optimization:

minimize f(x) where $f \in C^1(\mathbb{R}^n)$ or $C^2(\mathbb{R}^n)$. $x \in \mathbb{R}^n$

Currently two main competing methodologies:

- Linesearch methods
- Trust-region methods

to globalize gradient and (approximate) Newton steps. Much reliable, efficient software for (large-scale) problems.

Is there anything more to say?...

Unconstrained optimization — a "mature" area?

Nonconvex local unconstrained optimization:

minimize f(x) where $f \in C^1(\mathbb{R}^n)$ or $C^2(\mathbb{R}^n)$.

Currently two main competing methodologies:

- Linesearch methods
- Trust-region methods

to globalize gradient and (approximate) Newton steps. Much reliable, efficient software for (large-scale) problems.

- Is there anything more to say?...
 - Global rates of convergence of optimization algorithms
 - ↔ Evaluation complexity of methods (from any initial guess)

[well-studied for convex problems, but unprecedented for nonconvex until recently]

Evaluation complexity of unconstrained optimization

Relevant analyses of iterative optimization algorithms:

- Global convergence to first/second-order critical points (from any initial guess)
- Local convergence and local rates (sufficiently close initial guess, well-behaved minimizer)

[Newton's method: Q-quadratic; steepest descent: linear]

- Global rates of convergence (from any initial guess) Worst-case function evaluation complexity
 - evaluations are often expensive in practice (climate modelling, molecular simulations, etc)
 - black-box/oracle computational model (suitable for the different 'shapes and sizes' of nonlinear problems)

[Nemirovskii & Yudin ('83); Vavasis ('92), Sikorski ('01), Nesterov ('04)]

Evaluation complexity of standard methods

- Improved complexity for cubic regularization
- Regularization and other methods with only occasionally accurate information

Global efficiency of steepest-descent methods

Steepest descent method (with linesearch or trust-region):

f $\in C^1(\mathbb{R}^n)$ with Lipschitz continuous gradient.

• to generate gradient $||g(x_k)|| \leq \epsilon$, requires at most

[Nesterov ('04); Gratton, Sartenaer & Toint ('08)]

 $\lceil \kappa_{\mathrm{sd}} \cdot \mathrm{Lips}_g \cdot (f(x_0) - f_{\mathrm{low}}) \cdot \epsilon^{-2} \rceil$ function evaluations.

Global efficiency of steepest-descent methods

Steepest descent method (with linesearch or trust-region):

f $\in C^1(\mathbb{R}^n)$ with Lipschitz continuous gradient.

• to generate gradient $||g(x_k)|| \leq \epsilon$, requires at most

[Nesterov ('04); Gratton, Sartenaer & Toint ('08)]

 $\lceil \kappa_{\mathrm{sd}} \cdot \mathrm{Lips}_g \cdot (f(x_0) - f_{\mathrm{low}}) \cdot \epsilon^{-2} \rceil$ function evaluations.

The worst-case bound is sharp for steepest descent: [CGT('10)]

For any $\epsilon > 0$ and $\tau > 0$, (inexact-linesearch) steepest descent applied to this *f* takes precisely

 $\left[\epsilon^{-2+\tau}\right]$ function evaluations

to generate $|g(x_k)| \leq \epsilon$.

Worst-case bound is sharp for steepest descent

Steepest descent method with exact linesearch

• $x_{k+1} = x_k - \alpha_k g(x_k)$ with $\alpha_k = \arg \min_{\alpha \ge 0} f(x_k - \alpha g(x_k))$

• takes $\left[\epsilon^{-2+\tau}\right]$ iterations to generate $\|g(x_k)\| \leq \epsilon$

Contour lines of $f(x_1, x_2)$ and path of iterates.

Global efficiency of Newton's method

Newton's method: $x_{k+1} = x_k - H_k^{-1}g_k$ with $H_k \succ 0$.

Newton's method: as slow as steepest descent

• may require $\lceil \epsilon^{-2+\tau} \rceil$ evaluations/iterations, same as steepest descent method

Globally Lipschitz continuous gradient and Hessian

when globalized with trust-region or linesearch, Newton's method will take at most

$$\left[\kappa_N\epsilon^{-2}\right]$$

evaluations to generate $||g_k|| \leq \epsilon$

similar worst-case complexity for classical trust-region and linesearch methods

Is there any method with better evaluation complexity than steepest-descent?

Improved complexity for cubic regularization

Improved complexity for cubic regularization

A cubic model: [Griewank ('81, TR), Nesterov & Polyak ('06), Weiser et al ('07)] *H* is globally Lipschitz continuous with Lipschitz constant 2σ : Taylor, Cauchy-Schwarz and Lipschitz \Longrightarrow

$$f(x_k + s) \leq \underbrace{f(x_k) + s^T g(x_k) + \frac{1}{2} s^T H(x_k) s + \frac{1}{3} \sigma \|s\|_2^3}_{m_k(s)}$$

 $\implies \text{reducing } m_k \text{ from } s = 0 \text{ decreases } f \text{ since } m_k(0) = f(x_k).$ Cubic regularization method: [Nesterov & Polyak ('06)] $\blacksquare x_{k+1} = x_k + s_k$

COMPUTE $s_k \longrightarrow \min_s m_k(s)$ globally: [tractable, even if m_k nonconvex!]

Improved complexity for cubic regularization

A cubic model: [Griewank ('81, TR), Nesterov & Polyak ('06), Weiser et al ('07)] *H* is globally Lipschitz continuous with Lipschitz constant 2σ : Taylor, Cauchy-Schwarz and Lipschitz \Longrightarrow

$$f(x_k + s) \leq \underbrace{f(x_k) + s^T g(x_k) + \frac{1}{2} s^T H(x_k) s + \frac{1}{3} \sigma \|s\|_2^3}_{m_k(s)}$$

 \implies reducing m_k from s = 0 decreases f since $m_k(0) = f(x_k)$.

Cubic regularization method:

[Nesterov & Polyak ('06)]

 $x_{k+1} = x_k + s_k$

COMPUTE $s_k \longrightarrow \min_s m_k(s)$ globally: [tractable, even if m_k nonconvex!]

Worst-case evaluation complexity: at most $\lceil \kappa_{cr} \cdot \epsilon^{-3/2} \rceil$ function evaluations to ensure $||g(x_k)|| \leq \epsilon$. [Nesterov & Polyak ('06)]

Can we make cubic regularization computationally efficient ?

Adaptive cubic regularization – a practical method

[C, Gould & Toint (CGT): Math Programming (2011)]

 \blacksquare cubic regularization model at x_k

Use

 $m_k(s) \equiv f(x_k) + s^T g(x_k) + \frac{1}{2} s^T B_k s + \frac{1}{3} \sigma_k \|s\|^3$

σ_k > 0 is the iteration-dependent regularization weight
 B_k is an approximate Hessian

[C, Gould & Toint (CGT): Math Programming (2011)]

– cubic regularization model at x_k

Use

 $m_k(s) \equiv f(x_k) + s^T g(x_k) + \frac{1}{2} s^T B_k s + \frac{1}{3} \sigma_k \|s\|^3$

σ_k > 0 is the iteration-dependent regularization weight
 B_k is an approximate Hessian

• compute $s_k \approx \arg \min_s m_k(s)$ [details to follow]

• compute $\rho_k = \frac{f(x_k) - f(x_k + s_k)}{f(x_k) - m_k(s_k)}$ • set $x_{k+1} = \begin{cases} x_k + s_k & \text{if } \rho_k > \eta = 0.1 \\ x_k & \text{otherwise} \end{cases}$

 $\sigma_{k+1} = \sigma_k/\gamma = 2\sigma_k$ when $ho_k < \eta$; else $\sigma_{k+1} = \max\{\gamma\sigma_k, \sigma_{\min}\}$

Adaptive Regularization with Cubics (ARC)

ARC: s_k =global min of $m_k(s)$ over $s \in S \leq \mathbb{R}^n$, with $g \in S$ \longrightarrow increase subspaces to satisfy termination criteria: $\|\nabla_s m_k(s_k)\| \leq \min(1, \|s_k\|) \|g_k\|$

ARC has excellent convergence properties: globally, to second-order critical points and locally, Q-quadratically.

Adaptive Regularization with Cubics (ARC)

ARC: $s_k = \text{global min of } m_k(s) \text{ over } s \in S \leq \mathbb{R}^n$, with $g \in S$ \longrightarrow increase subspaces to satisfy termination criteria: $\|\nabla_s m_k(s_k)\| \leq \min(1, \|s_k\|) \|g_k\|$

ARC has excellent convergence properties: globally, to second-order critical points and locally, Q-quadratically.

Worst-case performance of ARC

If *H* is Lipschitz continuous on iterates' path and $\|(B_k - H_k)s_k\| = O(\|s_k\|^2)^{(*)}$, then ARC requires at most $\left[\kappa_{arc} \cdot L_H^{\frac{3}{2}} \cdot (f(x_0) - f_{low}) \cdot \epsilon^{-\frac{3}{2}}\right]$ function evaluations

to ensure $||g_k|| \leq \epsilon$. [cf. Nesterov & Polyak]

(*) achievable when $B_k = H_k$ or when B_k is computed by gradient finite differences

Worst-case performance of ARC

If *H* is Lipschitz continuous on iterates' path and $||(B_k - H_k)s_k|| = O(||s_k||^2)^{(*)}$, then ARC requires at most $\left[\kappa_{arc} \cdot L_H^{\frac{3}{2}} \cdot (f(x_0) - f_{low}) \cdot \epsilon^{-\frac{3}{2}}\right]$ function evaluations

to ensure $||g_k|| \leq \epsilon$. (*) achievable when $B_k = H_k$ or when B_k is computed by gradient finite differences Key ingredients: **u** sufficient function decrease: $f(x_k) - f(x_{k+1}) \geq \frac{\eta_1}{6} \sigma_k ||s_k||^3$

[local, approximate model minimization is sufficient here]

long successful steps: $||s_k|| \ge C ||g_{k+1}||^{\frac{1}{2}}$ (and $\sigma_k \ge \sigma_{\min} > 0$)

 \implies while $||g_k|| \ge \epsilon$ and k successful,

 $f(x_k) - f(x_{k+1}) \geq rac{\eta_1}{6} \sigma_{\min} C \cdot \epsilon^{rac{3}{2}}$

summing up over k successful: $f(x_0) - f_{\text{low}} \ge k_{\text{S}} \frac{\eta_1 \sigma_{\min} C}{6} \epsilon^{\frac{3}{2}}$

Cubic regularization: worst-case bound is optimal

Sharpness: for any $\epsilon > 0$ and $\tau > 0$, to generate $|g(x_k)| \le \epsilon$, cubic regularization/ARC applied to this *f* takes precisely

 $\left[\epsilon^{-\frac{3}{2}+\tau}\right]$ function evaluations

ARC's worst-case bound is optimal within a large class of second-order methods for *f* with Lipschitz continuous *H*.[CGT'11]

Second-order optimality complexity bounds

- $\mathcal{O}(\epsilon^{-3})$ evaluations for ARC and trust-region to ensure both $||g_k|| \leq \epsilon$ and $\lambda_{\min}(B_k) \geq -\epsilon$. [CGT'12]
- this bound is tight for each method.

Regularization methods with only occasionally accurate models

Probabilistic local models and methods

Context/purpose: $f \in C^1$ or $f \in C^2$ but derivatives are inaccurate/impossible/expensive to compute.

- Use model-based derivative-free optimization algorithms
- Models may be "good"/ "sufficiently accurate" only with certain probability, for example:

 \longrightarrow models based on random sampling of function values (within a ball)

 \longrightarrow finite-difference schemes in parallel, with total probability of any processor failing less than 0.5

- Consider cubic regularization local models with approximate first and second derivatives.
- Expected number of iterations to generate sufficiently small 'true' gradients?

Probabilistic ARC

In the ARC framework, each (realization of) the cubic regularization model [C & Scheinberg, 2015]

 $m_k(s) = f(x_k) + s^T g_k + \frac{1}{2} s^T b_k s + \frac{1}{3} \sigma_k \|s\|^3$ has $g_k \approx \nabla f(x_k)$ and $b_k \approx H(x_k)$.

Random model/variable $M_k \longrightarrow m_k(\omega_k)$ realization; random vars $X_k, S_k, \Sigma_k \longrightarrow x_k, s_k, \sigma_k$ realizations

Probabilistic ARC

In the ARC framework, each (realization of) the cubic regularization model [C & Scheinberg, 2015]

 $m_k(s) = f(x_k) + s^T g_k + \frac{1}{2} s^T b_k s + \frac{1}{3} \sigma_k \|s\|^3$ has $g_k \approx \nabla f(x_k)$ and $b_k \approx H(x_k)$.

Random model/variable $M_k \longrightarrow m_k(\omega_k)$ realization; random vars $X_k, S_k, \Sigma_k \longrightarrow x_k, s_k, \sigma_k$ realizations

 $\{M_k\}$ is (p)-probabilistically 'sufficiently accurate' for P-ARC if for $\{\Sigma_k, X_k\}$, the events

 $I_{k} = \{ \|\nabla f(X_{k}) - G_{k}\| \le \kappa_{g} \|S_{k}\|^{2} \& \|(H(X_{k}) - B_{k})S_{k}\| \le \kappa_{H} \|S_{k}\|^{2} \}$

hold with probability at least p (conditioned on the past). I_k occurs $\longrightarrow k$ true iteration; otherwise, false.

Probabilistic ARC - complexity

If $\nabla f(x)$ and H are Lipschitz continuous, then the expected number of iterations that P-ARC takes until $\|\nabla f(x^k)\| \leq \epsilon$ satisfies

$$\mathbb{E}(N_\epsilon) \leq rac{1}{2p-1} \cdot \kappa_{ ext{p-arc}} \cdot (f(x_0) - f_{ ext{low}}) \cdot \epsilon^{-rac{3}{2}}$$

provided the probability of sufficiently accurate models is $p > \frac{1}{2}$.

Analysis

Four types of iterations (successful, unsuccessful, true and false)

Analysis of joint stochastic processes $\{\Sigma_k, F(x_0) - F(X_k)\}$

Probabilistic ARC - analysis

Let N_{ϵ} hitting time for $\|\nabla f(X^{k})\| \leq \epsilon$ Measure of progress towards optimality: $F_{k} = f(X^{0}) - f(X^{k})$ As $F_{k+1} \leq F_{k} \& F_{k} \leq F_{*} = f(X^{0}) - f_{low}$: $\mathbb{E}(N_{\epsilon}) \leq \mathbb{E}(T_{F_{*}}^{F_{k}})$. If k is a true and successful iteration, then $f_{k+1} \geq f_{k} + \frac{\kappa}{(\max\{\sigma_{k}, \sigma_{c}\})^{3/2}} \|\nabla f(x^{k+1})\|^{3/2}$ and $\sigma_{k+1} = \max\{\gamma \sigma_{k}, \sigma_{\min}\}$

If $\sigma_k \geq \sigma_c$, and iteration k is true, then it is also successful.

Probabilistic ARC - analysis

Let N_{ϵ} hitting time for $\|\nabla f(X^{k})\| \leq \epsilon$ Measure of progress towards optimality: $F_{k} = f(X^{0}) - f(X^{k})$ As $F_{k+1} \leq F_{k} \& F_{k} \leq F_{*} = f(X^{0}) - f_{low}$: $\mathbb{E}(N_{\epsilon}) \leq \mathbb{E}(T_{F_{*}}^{F_{k}})$. If k is a true and successful iteration, then $f_{k+1} \geq f_{k} + \frac{\kappa}{(\max\{\sigma_{k}, \sigma_{c}\})^{3/2}} \|\nabla f(x^{k+1})\|^{3/2}$ and $\sigma_{k+1} = \max\{\gamma \sigma_{k}, \sigma_{\min}\}$

If $\sigma_k \geq \sigma_c$, and iteration k is true, then it is also successful.

Split iterations into $K' = \{k : \sigma_k > \sigma_c\}$ and $K'' = \{k : \sigma_k \le \sigma_c\}$; analyze joint stochastic processes $\{\Sigma_k, F_k\}$ for $k \in K'$ and $k \in K''$.

Over K': σ_k is a random walk (goes 'up' w.p. 1 - p; 'down' w.p. p). Hence $\sigma_k = \sigma_c$ on average every $\frac{1}{2p-1}$ iterations.

 F_k increases by $\kappa \left(\frac{\epsilon}{\sigma_c}\right)^{\frac{3}{2}}$ on average every $\frac{1}{2p-1}$ iterations.

Linesearch methods with occasionally accurate models

A probabilistic linesearch method

Initialization: Choose parameters $\gamma, \eta \in (0, 1)$. At iteration k, do:

- (Model and step calculation) Compute random model $m_k(s) = f(x_k) + s^T g_k$ and use it to generate direction g_k . Set $s_k = -\alpha_k g_k$.
- (Sufficient decrease) Check if $\rho_k = \frac{f(x_k) f(x_k + s_k)}{f(x_k) m_k(s_k)} \ge \eta$ [this is equivalent to the Armijo condition]

```
(Successful step) If ρ<sub>k</sub> ≥ η, set
x<sub>k+1</sub> = x<sub>k</sub> + s<sub>k</sub> and α<sub>k+1</sub> = min{γ<sup>-1</sup>α<sub>k</sub>, α<sub>max</sub>}.
(Unsuccessful step) Else, set
x<sub>k+1</sub> = x<sub>k</sub> and α<sub>k+1</sub> = γα<sub>k</sub>. □
```

More general models m_k and directions d_k possible.

A Probabilistic LineSearch (P-LS) method

The model $\{M_k\}$ is (p)-probabilistically 'sufficiently accurate' for P-LS if for corresponding $\{A_k, X_k\}$, the events

 $I_k = \{ \|\nabla f(X_k) - G_k\| \le \kappa_g \mathcal{A}_k \|G_k\| \}$

hold with probability at least p (conditioned on the past). I_k occurs $\longrightarrow k$ true iteration; otherwise, false.

Complexity: If ∇f is Lipschitz continuous, then the expected number of iterations that P-LS takes until $\|\nabla f(x^k)\| \leq \epsilon$ satisfies

$$\mathbb{E}(N_\epsilon) \leq rac{1}{2p-1} \cdot \kappa_{ ext{p-ls}} \cdot (f(x_0) - f_{ ext{low}}) \cdot \epsilon^{-2}$$

provided the probability of sufficiently accurate models is $p > \frac{1}{2}$.

P-LS method - complexity for special cases

f convex with bounded level sets: the expected number of iterations that P-LS takes until $f(x^k) - f_{low} \le \epsilon$ is

$$\mathbb{E}(N_\epsilon) \leq rac{1}{2p-1} \cdot \kappa_{ ext{p-ls-c}} \cdot D^2 \cdot \epsilon^{-1}.$$

measure of progress:
$$F_k = rac{1}{f(X_k) - f_{\mathrm{low}}}; \mathbb{E}(N_\epsilon) = \mathbb{E}(T_{\epsilon^{-1}}^{F_k}).$$

f strongly convex: the expected number of iterations that P-LS takes until $f(x^k) - f_{low} \le \epsilon$ is

$$\mathbb{E}(N_\epsilon) \leq rac{1}{2p-1} \cdot \kappa_{ ext{pls-cc}} \cdot rac{L}{\mu} \cdot \log(\epsilon^{-1}).$$

measure of progress: $F_k = \log rac{1}{f(X_k) - f_{\mathrm{low}}}$; $\mathbb{E}(N_\epsilon) = \mathbb{E}(T_{F_\epsilon}^{F_k})$ where $F_\epsilon = \log rac{1}{\epsilon}$.

A generic algorithmic framework

Initialization: Choose a class of (possibly random) models m_k ; and parameters $\gamma, \eta \in (0, 1)$. At iteration k, do:

- (Model and step calculation) Compute m_k of f around x_k ; and $s_k = s_k(\alpha_k)$ to reduce $m_k(s)$.
- (Sufficient decrease) Check if $\rho_k = \frac{f(x_k) - f(x_k + s_k)}{f(x_k) - m_k(s_k)} \ge \eta$

• (Successful step) If $\rho_k \geq \eta$, set

 $x_{k+1} = x_k + s_k$ and $\alpha_{k+1} = \min\{\gamma^{-1}\alpha_k, \alpha_{\max}\}.$

(Unsuccessful step) Else, set

$$x_{k+1} = x_k$$
 and $\alpha_{k+1} = \gamma \alpha_k$. \Box

Examples: linesearch methods $(s_k = \alpha_k d_k)$; adaptive regularization $(\alpha_k = 1/\sigma_k)$; trust-region.

A generic algorithmic framework...

 $\{M_k\}$ is (p)-probabilistically 'sufficiently accurate' for P-Alg: $I_k = \{M_k \text{ 'sufficiently accurate' } | \mathcal{A}_k \text{ and } X_k\}$ holds with prob. p. $I_k \text{ occurs} \longrightarrow k$ true iteration; otherwise, false. Assumption: P-Alg construction and M_k probabilistically

accurate must ensure: there exists C > 0 s.t. if $\alpha_k \leq C$ and iteration k is true then k is also successful. Hence $\alpha_{k+1} = \min\{\gamma^{-1}\alpha_k, \alpha_{\max}\}$ and $f_{k+1} \geq f_k + h(\alpha_k)$.

Result: For P-Alg with (p)-probabilistically accurate models, the expected number of iterations to reach desired accuracy can be founded as follows

$$\mathbb{E}(N_\epsilon) \leq rac{1}{2p-1} \cdot \kappa_{ ext{p-alg}} \cdot rac{F_\epsilon}{h(C)},$$

where $p > \frac{1}{2}$ and $F_{\epsilon} \ge F_k$ total function decrease.

Generating (p)-sufficiently accurate models

Stochastic gradient and batch sampling [Byrd et al, 2012]

 $\|\nabla f_{S_k}(x^k) - \nabla f(x^k)\| \le \mu \|\nabla f_{S_k}(x^k)\|$

with $\mu \in (0, 1)$ and fixed, sufficiently small α_k .

Models formed by sampling of function values in a ball B(x_k, Δ_k) (model-based dfo) M_k (p)-fully linear model: if the event

$$I_k^l ~=~ \{ \|
abla f(X^k) - G^k \| \leq \kappa_g \Delta_k \}$$

holds at least w.p. p (conditioned on the past). M_k (p)-fully quadratic model: if the event

 $I_k^q = \{ \| \nabla f(X^k) - G^k \| \le \kappa_g \Delta_k^2 \text{ and } \| H(X^k) - B^k \| \le \kappa_H \Delta_k \}$ holds at least w.p. p (conditioned on the past). Some results not covered (but existent/in progress):

high-order adaptive regularization methods: [Birgin et al. ('15)]

$$m_k(s) = T_{p-1}(x_k, s) + \frac{\sigma_k}{p} ||s||^p$$

where $T_{p-1}(x_k, s)$ (p-1)-order Taylor polynomial of f. Complexity: $O(\epsilon^{-\frac{p}{p-1}})$ to ensure $||g(x_k)|| \leq \epsilon$ [approx, local model min] Complexity of pth order criticality? [in progress]

Complexity of constrained optimization (with convex, nonconvex constraints): for carefully devised methods, it is the same as for the unconstrained case [CGT ('12,'16)]

Optimization with occasionally accurate models:

- second-order criticality (in progress)
- stochastic function values trust-region approach [Arxiv, with Blanchet, Meninckelly, Scheinberg'16]