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WHY SECOND
ORDER? DEEP LEARNING CONTEXT

Neural Network Loss Function:

∈R ( ) = 1
|T |

∑
( , )∈T (µ( , ), )

µ( , ) : R → R
ˆ = µ( , ) denotes model prediction
observed from data ∈ T

∇ ( ), ∇2 ( ) obtainable

Observations
No bad local minimums

! (Kawaguchi, 2016), (Soudry and Carmon, 2016)

Example: 0 + MNIST + LBFGS ⇒ ( ∗) = 0
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WHY SECOND
ORDER? MNIST 60K TRAINING, 10K TEST
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WHY SECOND
ORDER? HYPER-PARAMETER OPTIMIZATION

Two ways to dive deep when tuning:
...1 solver fixed, tune model
...2 model fixed, tune solver

How to minimize total user time?
...1 Parallel autotune and SGD
...2 Second-order methods
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BACKGROUND THE DEEP LEARNING HESSIAN

The Hessian for deep learning problems has form:

=
1

|T |
∑

( , )∈T
µ µ︸ ︷︷ ︸

µ≽0

+ ( , )

Where µ is the Jacobian of µ( , ), is the Hessian for the
loss function ( , ) with respect to , and

( , ) =
∑

=1

[∇ (µ( , ), )] ∇2[µ( , )] .

Note that ( , ) = 0 if training error is 0, or µ( , ) is linear.
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BACKGROUND GENERALIZED GUASS-NEWTON
MATRIX

Martens 2010 seminal work show great results by
...1 Approximating with ≽ 0

=
1

|T |
∑

( , )∈T
µ µ

...2 Using Levenberg-Marquardt modifications

( + λ ) = −

where λ is modified based on past performance
...3 Applying the conjugate gradient algorithm

Why not use directly? (Martens 2012)
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BACKGROUND THE PROBLEM WITH NEWTON’S
METHOD

Suppose we simply solve (where = ∇2 ( ) and = ∇ ( ))

= − , where we need < 0

Using spectral decomposition = Λ :

=
∑

λ <0

( )2

|λ |
︸ ︷︷ ︸

≥0

−
∑

λ >0

( )2

λ
︸ ︷︷ ︸

≥0

In general = + where
maximizes, depends on negative eigenspace
minimizes, depends on positive eigenspace

All it takes is one small negative eignenvalue!
Copyright 2016, SAS Institute Inc. All rights reserved. 8



BACKGROUND IMPLICATIONS FOR ITERATIVE
METHODS

...1 Classical iterative methods solve equations as is:

= − , unconcerned if ≥ or ≤ 0.

...2 Need to implicitly or explicitly work with ˆ ≈ such that

ˆ ≻ 0 ⇒ < 0

...3 Line-search methods use explicit modifications

...4 Trust-region methods use implicit modifications
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ITERATIVE
SOLVERS

CURRENT STATE-OF-ART
NONCONVEX ITERATIVE METHODS

Steihaug-Toint
GLTR
Saddle-free Newton (Dauphin et al. 2014)
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ITERATIVE
SOLVERS CG METHOD OVERVIEW

...1 Generate { 0, . . . , } such that

= 0 if ̸= .

...2 Recursively obtain approximate solution +1 as

+1 = + α

! α = α ( + α ), if > 0
! α = α ( + α ), if < 0

! Here ( ) = +
1

2
...3 While > 0

! ∥ ∥ ≥ ∥ −1∥ assuming 0 = 0
! +1 minimizes quadratic model ( ) in span{ 0, . . . , }.
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ITERATIVE
SOLVERS STEIHAUG-TOINT ALGORITHM
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1
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ITERATIVE
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ITERATIVE
SOLVERS

TRUNCATED NEWTON ERROR BOUND
NOT TRUE WHEN NONCONVEX

Consider the 2 trust-region problem

∈R2

[
−1
1

]
+

1

2

[
−106 0
0 106

]

∥ ∥2 ≤ 1,

We can show that ( ∗) < −106

2
. However, because = 0,

the Steihaug-Toint algorithm would exit immediately, with

=

[
1/

√
2

−1/
√
2

]
⇒ ( ) = −2/

√
2 ≫ ( ∗).

Note: In deep learning, we need accuracy early on, not
asymptotically
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ITERATIVE
SOLVERS

GENERALIZED LANCZOS
TRUST-REGION (GLTR) METHOD

...1 Starts where Steihaug-Toint stops

...2 Searches for boundary solution in span of Lanczos vectors

...3 Subspaces are nested

...4 Updates are not recursive

...5 Uses Moré and Sorensen on tri-diagonal system:
∗ = γ 1 +

1
2 , s.t.∥ ∥ ≤ δ

...6 To obtain the direction we need all Lanczos vectors

= [ 1, 2, . . . , , . . . , +1, . . . ]

⎡

⎢⎣

∗
1
...
∗

⎤

⎥⎦

...7 Storage cost: , k is matrix multiplies, is dimension of .
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ITERATIVE
SOLVERS

IDEAL ITERATIVE SOLVER FOR DL
(MARTENS 2012)

...1 Accuracy controlled by solver not problem geometry

...2 Recursive updates, low overhead

...3 Warm-starts, 0 =
−1

...4 Preconditioner not tied to elliptic norm/matrix shift

ˆ = + λ , where ̸= .

Additionally want:
Descent direction guaranteed: ∇ ( ) < 0

Naturally reduces to CG on Newton’s method
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LINE-SEARCH
METHOD

ADAPTING CG TO NEGATIVE
CURVATURE

...1 Generate { 0, . . . , } such that

= 0 if ̸= .

...2 Recursively obtain approximate solution +1 as

+1 = + α

! α = α ( + α ), if > 0

! α = α ( + α ), if < 0

! Here ( ) = +
1

2
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LINE-SEARCH
METHOD MODIFYING CG

> 0

< 0

α

α
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LINE-SEARCH
METHOD

EARLY MODIFICATIONS FOR
NEWTON’S METHOD

Set ˆ = |Λ| , where = Λ and solve:

ˆ = −

Then

=
∑

=1

−
|λ | ⇒ < 0.

The problem:

|λ |→0

| |
∥ ∥∥ ∥ = 1

Singular vectors optimized before directions of greatest
negative curvature.
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LINE-SEARCH
METHOD

RECENT MODIFICATIONS FOR
NEWTON’S METHOD

Set ˆ = (|Λ|+ σ ) , where = Λ and solve:

ˆ = −

Then

=
∑

=1

−
|λ |+ σ

⇒ < 0.

Compare to trust-region solution

=
∑

=1

−
λ + σ

⇒ < 0.

where σ > λ .
Emphasis on corresponding to |λ | versus λ .
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LINE-SEARCH
METHOD

MODIFIED CG OBSERVATIONS (ZHOU
2009)

Class of modifications that avoid restarts:

ˆ = + σ

where = + . (O’Leary 1982, Nash 1984)
Choose σ so that

ˆ
≤ λ∥ ∥

Can then show trust-region strength convergence
No need to store { | σ ̸= 0}
Works seamlessly in Levenberg-Marquardt framework
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LINE-SEARCH
METHOD MNIST WITH 784-400-150-10 NETWORK
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LINE-SEARCH
METHOD MNIST WITH 784-400-150-10 NETWORK
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TRUST-REGION
METHOD

SUCCESSIVE SUBSPACE METHODS
(SSM)

Starts where the Steihaug-Toint (ST) method stops
Small overhead compared to CG after ST point
Use evolving small dimensional subspaces

{ 1, 2, . . .} where ∈ R × , ≤ 4.

Uses Moré and Sorensen on

( ) +
1

2
( ) ,

∥ ∥2 ≤ δ
(1)

Use LAPACK to solve
( ) ,

∥ ∥2 = 1
(2)
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TRUST-REGION
METHOD FUNDAMENTAL SSM THEOREM

.
Theorem (Convergence Hager)
..

......

Suppose at each iteration

( , + , ∗) ⊂ ( )

where
∗ =

then → ∗, the global trust-region subproblem solution!

Approximating on the fly typically more than sufficient
Implementations: (Hager 2001), (G. 2005), (Erway, Gill, G.
2007), (Erway, Gill 2008)
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TRUST-REGION
METHOD CONCLUSION

Trust-region line-search methods suggested that:
...1 Accuracy controlled by solver not problem geometry
...2 Recursive updates, low overhead
...3 Warm-starts, 0 =

−1

...4 Preconditioner not tied to elliptic norm/matrix shift

ˆ = + λ , where ̸= .

...5 Descent direction guaranteed: ∇ ( ) < 0

...6 Naturally reduces to CG on Newton’s method
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TRUST-REGION
METHOD FUTURE WORK

Numerical results for SSM method class
Mini-batching
Hybrids: only need second-order for initial iterations
New class of algorithms for “symmetric linear” functions:

! ( ) : → does not always behave like a matrix
! | ( )− ( )| ≫ ϵ
! ( ) = +
! Not all book-keeping tricks may be applicable
! MCG-LS may have advantage over SSM-TR
! Is it a bug?

Copyright 2016, SAS Institute Inc. All rights reserved. 32



..
http://support.sas.com/or

Unconventional iterative methods for nonconvex
optimization in a matrix-free environment

.


	Why second order?
	Background
	Iterative Solvers
	Line-search method
	Trust-region method

