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WHY SECOND
ORDER? DEEP LEARNING CONTEXT

Neural Network Loss Function:

mianR" f(’U}) = ﬁ Z(d,y)GT L(/’L(dv U)), y)

@ u(d,w): RT = RO

@ y = u(d, w) denotes model prediction

@ yobserved fromdata d e T

@ Vf(w), V?f(w)s obtainable L
Observations e e

@ No bad local minimums

» (Kawaguchi, 2016), (Soudry and Carmon, 2016)
@ Example: wy + MNIST + LBFGS = f(u*) =0




WHY SECOND

ORDER? MNIST 60K TRAINING, 10K TEST
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WHY SECOND HYPER-PARAMETER OPTIMIZATION

ORDER?
Learning rate,
momentum, batchsize,
11, 12, dropout,
annealing rate ...
¥
Two ways to dive deep when tuning: N =
. N |
@ solver fixed, tune model \ ) | /
. (NG
@ model fixed, tune solver =
L . Analyst
How to minimize total user time?
@ Parallel autotune and SGD ""h"m‘l

@ Second-order methods

Random Latin Hypercube

9Sas | B,



BACKGROUND THE DEEP LEARNING HESSIAN

The Hessian for deep learning problems has form:

1

H
7]

> JTHLJ +N(d, y)

(GWET ]

Where J, is the Jacobian of p(d, w), Hy, is the Hessian for the
loss function L(z, y) with respect to z, and

O
N(d,y) = D [V-L(p(d, w), )0V [u(d, w)]o.

o=1

Note that N(d, y) = 0 if training error is 0, or y(d, w) is linear.




GENERALIZED GUASS-NEWTON

BACKGROUND MATRIX

Martens 2010 seminal work show great results by
@ Approximating H with G = 0

Z JIHL,

(d,y)eT

© Using Levenberg-Marquardt modifications

(G+ A)s=—

where )\ is modified based on past performance
© Applying the conjugate gradient algorithm
Why not use H directly? (Martens 2012)




THE PROBLEM WITH NEWTON'S

BACKGROUND METHOD

Suppose we simply solve (where H = V2f(w) and g = V{(w))
Hs = —g, where we need s’g < 0

Using spectral decomposition H = VAV

T)\2 T)N\2
T (”ig) _ (”ig)

In general s = s, + s, where

@ s, maximizes, depends on negative eigenspace
@ s, minimizes, depends on positive eigenspace
All it takes is one small negative eignenvalue!




IMPLICATIONS FOR ITERATIVE

BACKGROUND METHODS

@ Classical iterative methods solve equations as is:

Hs = —g, unconcerned if s’g > or < 0.

@ Need to implicitly or explicitly work with H ~ H such that

H=0 = slg<0

@ Line-search methods use explicit modifications
© Trust-region methods use implicit modifications




ITERATIVE CURRENT STATE-OF-ART
SOLVERS NONCONVEX ITERATIVE METHODS

@ Steihaug-Toint
e GLTR
@ Saddle-free Newton (Dauphin et al. 2014)




ITERATIVE
SOLVERS CG METHOD OVERVIEW

@ Generate {py, ..., p;} such that
plHp; =0 i £ )

© Recursively obtain approximate solution s, as

Sk+1 = Sk + agpg

> oy, = argming Qs + apy), if pHpy, > 0
>y = argmax, Q(s, + apy), if pfHp, <0

1
» Here Q(s) = sTg+ = sTHs
@ While p/Hpy, > 0

> ||skllp > |Isk—1]|lp @ssuming sp = 0
> sp+1 Minimizes quadratic model Q(s) in span{po, ..., pi}-

2




ITERATIVE

SOLVERS STEIHAUG-TOINT ALGORITHM

$1

S0




ITERATIVE

SOLVERS STEIHAUG-TOINT ALGORITHM
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ITERATIVE

SOLVERS STEIHAUG-TOINT ALGORITHM

S3

52




ITERATIVE

SOLVERS STEIHAUG-TOINT ALGORITHM

S3

S4 51

S0
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ITERATIVE TRUNCATED NEWTON ERROR BOUND
SOLVERS NOT TRUE WHEN NONCONVEX

Consider the 2D trust-region problem

—1] 1 ;[-10% 0
ml?el]g%lze S [ J + 25 [ 0 106] s
Isll2 < 1,
106 T
We can show that Q(s*) < 5 However, because ¢'Bg = 0,
the Steihaug-Toint algorithm would exit immediately, with

sor= |10 = et ——2vEs o)

Note: In deep learning, we need accuracy early on, not
asymptotically




ITERATIVE GENERALIZED LANCZOS
SOLVERS TRUST-REGION (GLTR) METHOD

@ Starts where Steihaug-Toint stops

@ Searches for boundary solution in span of Lanczos vectors
© Subspaces are nested

© Updates are not recursive

© Uses Moré and Sorensen on tri-diagonal system:

y* = argmin, vyTer + %yTTy, sty <4

@ To obtain the direction s;, we need all Lanczos vectors
%i
Sk:[CIhQQ7---7QST7---7QST+17---Qk] :

*

Yk

@ Storage cost: kn, k is matrix multiplies, n is dimension of ¢.




ITERATIVE |DEAL ITERATIVE SOLVER FOR DL
SOLVERS (MARTENS 2012)

@ Accuracy controlled by solver not problem geometry
@ Recursive updates, low overhead

© Warm-starts, s, = s} '

© Preconditioner not tied to elliptic norm/matrix shift

H= H+ \I, where [ # P.

Additionally want:
@ Descent direction guaranteed: s/Vf(w) < 0
@ Naturally reduces to CG on Newton’s method




LINE-SEARCH ADAPTING CG TO NEGATIVE
METHOD CURVATURE

@ Generate {py, ..., p;} such that

piHp; = 0 if i # j.

© Recursively obtain approximate solution s, as

Sk+1 = Sk + gy

>« = argmin, Q(si + apy), if kaHpk >0

> |y = argmax, Q(sg + apy), if kaHpk <0

1
» Here Q(s) = s7g+ §STH5




LINE-SEARCH

METHOD MODIFYING CG




LINE-SEARCH EARLY MODIFICATIONS FOR
METHOD NEWTON'S METHOD

Set H = V|A| V", where H= VA V" and solve:

Hs= —g
Then
—ok
s = Z |;\}$’|ng = slg<0
=1 "
The problem:
|vis|

)

=0 [[oillllsll

Singular vectors optimized before directions of greatest
negative curvature.




LINE-SEARCH RECENT MODIFICATIONS FOR
METHOD NEWTON'S METHOD

Set i = V(|A| + 1) VT, where H = VA V”and solve:

Then

where o > \,.

Emphasis on v; corresponding to min |\;| versus min \;.




LINE-SEARCH MODIFIED CG OBSERVATIONS (ZHOU
METHOD 2009)

@ Class of modifications that avoid restarts:
H=H+ akrkr,?

where r, = Hsi + g. (O’Leary 1982, Nash 1984)
@ Choose ¢y, so that
piHpy,

pipk

< Mgl

@ Can then show trust-region strength convergence
@ No need to store {7} | o # 0}
@ Works seamlessly in Levenberg-Marquardt framework




LINE-SEARCH
METHOD

MNIST WITH 784-400-150-10 NETWORK
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LINE-SEARCH
METHOD

MNIST WITH 784-400-150-10 NETWORK
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LINE-SEARCH

METHOD MNIST WITH 784-400-150-10 NETWORK
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LINE-SEARCH
METHOD MNIST WITH 784-400-150-10 NETWORK

Test Error

0 2500 5000 7500 10000 12500

Matrix-Multiplication
------- DLMCG-HF Shifted ------- DLMCG-GN Shifted LM-GN
DLMCG-HF DLMCG-GN_ |




LINE-SEARCH

MNIST WITH 784-400-150-10 NETWORK

METHOD

Training Error
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TRUST-REGION SUCCESSIVE SUBSPACE METHODS
METHOD (SSM)

@ Starts where the Steihaug-Toint (ST) method stops
@ Small overhead compared to CG after ST point
@ Use evolving small dimensional subspaces

{Wh, Wa, ...} where W; € R™F | < 4.

@ Uses Moré and Sorensen on
1
minimize  w’{ Wg) + §UT( WIHW)u,
u
| Wullz < 5k

(1)

@ Use LAPACK to solve
minimize 2 WTHW)z,
[Wzl[2 =1




TRUST-REGION

METHOD FUNDAMENTAL SSM THEOREM

Theorem (Convergence Hager)
Suppose at each iteration

span (s, Hsg + g, v°) C span( W)

where
vTHy

vTy
then s — s*, the global trust-region subproblem solution!

v" = arg min

Approximating v on the fly typically more than sufficient
Implementations: (Hager 2001), (G. 2005), (Erway, Gill, G.
2007), (Erway, Gill 2008)

Copyright 2016, SAS e gsaS :'o"‘"l"x'n“«&»



TRUST-REGION

METHOD CONCLUSION

Trust-region line-search methods suggested that:
@ Accuracy controlled by solver not problem geometry
@ Recursive updates, low overhead
© Warm-starts, s, = s '
© Preconditioner not tied to elliptic norm/matrix shift

H= H+ X\, where [+ P.

© Descent direction guaranteed: s/Vf(w) < 0
© Naturally reduces to CG on Newton’s method




TRUST-REGION
METHOD FUTURE WORK

@ Numerical results for SSM method class
@ Mini-batching
@ Hybrids: only need second-order for initial iterations

@ New class of algorithms for “symmetric linear” functions:

H(w) : R — R™ does not always behave like a matrix
[w H(y) — y"H(w)| > e

H(w) = H+ noise

Not all book-keeping tricks may be applicable
MCG-LS may have advantage over SSM-TR

Is it a bug?

vV v vV vy VY Y
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