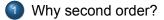
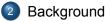
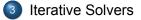
UNCONVENTIONAL ITERATIVE METHODS FOR NONCONVEX OPTIMIZATION IN A MATRIX-FREE ENVIRONMENT

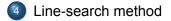
ICML @ NYC June 24, 2016

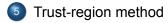
Josh Griffin Alireza Yektamaram Wenwen Zhou











WHY SECOND ORDER? DEEP LEARNING CONTEXT

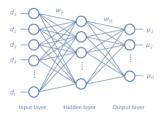
Neural Network Loss Function:

$$\min_{w \in \mathbb{R}^n} f(w) = rac{1}{|\mathcal{T}|} \sum_{(d,y) \in \mathcal{T}} L(\mu(d, w), y)$$

- $\mu(d, w) : \mathbb{R}^I \to \mathbb{R}^O$
- $\hat{y} = \mu(d, w)$ denotes model prediction
- y observed from data $d \in \mathcal{T}$
- $\nabla f(w)$, $\nabla^2 f(w)s$ obtainable

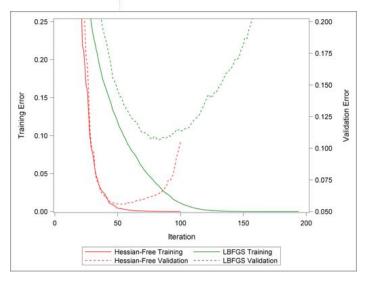
Observations

- No bad local minimums
 - (Kawaguchi, 2016), (Soudry and Carmon, 2016)
- Example: w_0 + MNIST + LBFGS $\Rightarrow f(w^*) = 0$



WHY SECOND ORDER?

MNIST 60K TRAINING, 10K TEST



WHY SECOND ORDER?

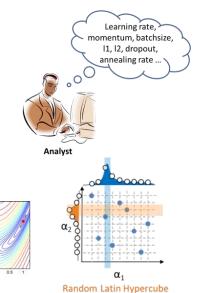
HYPER-PARAMETER OPTIMIZATION

Two ways to dive deep when tuning:

- solver fixed, tune model
- 2 model fixed, tune solver

How to minimize total user time?

- Parallel autotune and SGD
- Second-order methods



Sas. Hower

-0.5 0

BACKGROUND THE DEEP LEARNING HESSIAN

The Hessian for deep learning problems has form:

$$H = \frac{1}{|\mathcal{T}|} \sum_{(d,y)\in\mathcal{T}} \underbrace{J_{\mu}^{T} H_{L} J_{\mu}}_{G_{\mu} \succeq 0} + N(d,y)$$

Where J_{μ} is the Jacobian of $\mu(d, w)$, H_L is the Hessian for the loss function L(z, y) with respect to z, and

$$N(d, y) = \sum_{o=1}^{O} [\nabla_z L(\mu(d, w), y)]_o \nabla^2 [\mu(d, w)]_o.$$

Note that N(d, y) = 0 if training error is 0, or $\mu(d, w)$ is linear.

BACKGROUND GENERALIZED GUASS-NEWTON MATRIX

Martens 2010 seminal work show great results by

• Approximating H with $G \succeq 0$

$$G = \frac{1}{|\mathcal{T}|} \sum_{(d,y)\in\mathcal{T}} J_{\mu}^{T} H_{L} J_{\mu}$$

Using Levenberg-Marquardt modifications

$$(G + \lambda I)s = -g$$

where λ is modified based on past performance

Applying the conjugate gradient algorithm

Why not use *H* directly? (Martens 2012)

BACKGROUND THE PROBLEM WITH NEWTON'S METHOD

Suppose we simply solve (where $H = \nabla^2 f(w)$ and $g = \nabla f(w)$)

Hs = -g, where we need $s^Tg < 0$

Using spectral decomposition $H = V \Lambda V^T$:

$$s^{T}g = \underbrace{\sum_{\lambda_{i} < 0} \frac{(v_{i}^{T}g)^{2}}{|\lambda_{i}|}}_{\geq 0} - \underbrace{\sum_{\lambda_{i} > 0} \frac{(v_{i}^{T}g)^{2}}{\lambda_{i}}}_{\geq 0}$$

In general $s = s_n + s_p$ where

- *s_n* maximizes, depends on negative eigenspace
- *s_p* minimizes, depends on positive eigenspace

All it takes is one small negative eignenvalue!

BACKGROUND IMPLICATIONS FOR ITERATIVE METHODS

Classical iterative methods solve equations as is:

Hs = -g, unconcerned if $s^Tg \ge$ or ≤ 0 .

Need to implicitly or explicitly work with $\hat{H} ≈ H$ such that
 $\hat{H} ≻ 0 \Rightarrow s^T g < 0$

Line-search methods use explicit modifications
 Trust-region methods use implicit modifications

ITERATIVECURRENT STATE-OF-ARTSOLVERSNONCONVEX ITERATIVE METHODS

- Steihaug-Toint
- GLTR
- Saddle-free Newton (Dauphin et al. 2014)

ITERATIVE SOLVERS

CG METHOD OVERVIEW

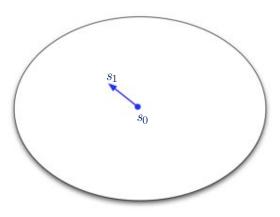
• Generate $\{p_0, \dots, p_k\}$ such that $p_k^T H p_j = 0$ if $i \neq j$.

2 Recursively obtain approximate solution s_{k+1} as

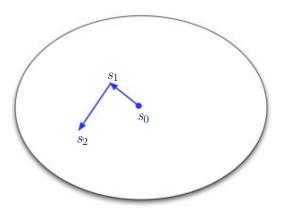
 $s_{k+1} = s_k + \alpha_k p_k$

- $\alpha_k = \arg \min_{\alpha} Q(s_k + \alpha p_k)$, if $p_k^T H p_k > 0$
- $\alpha_k = \arg \max_{\alpha} Q(s_k + \alpha p_k)$, if $p_k^T H p_k < 0$
- Here $Q(s) = s^T g + \frac{1}{2} s^T H s$

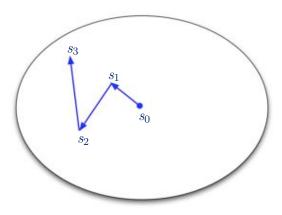
- $\|s_k\|_P \ge \|s_{k-1}\|_P$ assuming $s_0 = 0$
- ► s_{k+1} minimizes quadratic model Q(s) in span{ p_0, \ldots, p_k }.



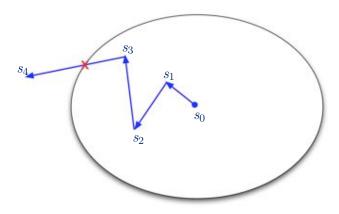
SOLVERS STEIHAUG-TOINT ALGORITHM



SOLVERS STEIHAUG-TOINT ALGORITHM



SOLVERS STEIHAUG-TOINT ALGORITHM



ITERATIVETRUNCATED NEWTON ERROR BOUNDSOLVERSNOT TRUE WHEN NONCONVEX

Consider the 2D trust-region problem

$$\begin{array}{ll} \underset{s \in \mathbb{R}^2}{\text{minimize}} & s^T \begin{bmatrix} -1\\1 \end{bmatrix} + \frac{1}{2} s^T \begin{bmatrix} -10^6 & 0\\0 & 10^6 \end{bmatrix} s \\ \|s\|_2 \le 1, \end{array}$$

We can show that $Q(s^*) < -\frac{10^6}{2}$. However, because $g^T B g = 0$, the Steihaug-Toint algorithm would exit immediately, with

$$s_{ST} = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix} \Rightarrow Q(s_{ST}) = -2/\sqrt{2} \gg Q(s^*).$$

Note: In deep learning, we need accuracy early on, not asymptotically

ITERATIVEGENERALIZED LANCZOSSOLVERSTRUST-REGION (GLTR) METHOD

- Starts where Steihaug-Toint stops
- Searches for boundary solution in span of Lanczos vectors
- Subspaces are nested
- Updates are not recursive
- Uses Moré and Sorensen on tri-diagonal system:

$$y^* = \operatorname{arg\,min}_y \quad \gamma y^T e_1 + \frac{1}{2} y^T T y, \; \; \mathbf{s.t.} \|y\| \le \delta$$

() To obtain the direction s_k we need all Lanczos vectors

$$s_k = [q_1, q_2, \dots, q_{ST}, \dots, q_{ST+1}, \dots q_k] \begin{array}{c} y_1^* \\ \vdots \\ y_k^* \end{array}$$

Storage cost: kn, k is matrix multiplies, n is dimension of g.

ITERATIVE IDEAL ITERATIVE SOLVER FOR DL (MARTENS 2012)

- Accuracy controlled by solver not problem geometry
- Recursive updates, low overhead
- 3 Warm-starts, $s_0^j = s_k^{j-1}$
- Preconditioner not tied to elliptic norm/matrix shift

$$\hat{H} = H + \lambda I$$
, where $I \neq P$.

Additionally want:

- Descent direction guaranteed: $s_k^T \nabla f(w) < 0$
- Naturally reduces to CG on Newton's method

LINE-SEARCH ADAPTING CG TO NEGATIVE METHOD CURVATURE

• Generate $\{p_0, \ldots, p_k\}$ such that

 $p_k^T H p_j = 0$ if $i \neq j$.

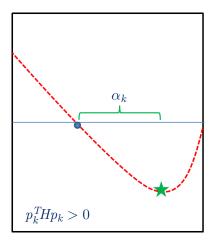
2 Recursively obtain approximate solution s_{k+1} as

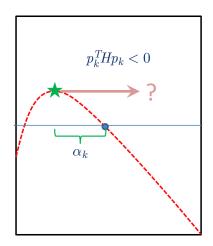
 $s_{k+1} = s_k + \alpha_k p_k$

► $\alpha_k = \arg \min_{\alpha} Q(s_k + \alpha p_k)$, if $p_k^T H p_k > 0$ ► $\alpha_k = \arg \max_{\alpha} Q(s_k + \alpha p_k)$, if $p_k^T H p_k < 0$ ► Here $Q(s) = s^T g + \frac{1}{2} s^T H s$

LINE-SEARCH METHOD

MODIFYING CG





SSAS HELLE

LINE-SEARCH EARLY MODIFICATIONS FOR METHOD NEWTON'S METHOD

Set $\hat{H} = V |\Lambda| V^T$, where $H = V \Lambda V^T$ and solve:

$$\hat{H}s = -g$$

Then

$$s = \sum_{i=1}^{n} \frac{-v_i^T g}{|\lambda_i|} v_i \quad \Rightarrow \quad s^T g < 0.$$

The problem:

$$\lim_{|\lambda_i| \to 0} \frac{|v_i^T s|}{\|v_i\| \|s\|} = 1$$

Singular vectors optimized before directions of greatest negative curvature.

LINE-SEARCH RECENT MODIFICATIONS FOR METHOD NEWTON'S METHOD

Set $\hat{H} = V(|\Lambda| + \sigma I) V^T$, where $H = V\Lambda V^T$ and solve:

$$\hat{H}s = -g$$

Then

$$s = \sum_{i=1}^{n} \frac{-v_i^T g}{|\lambda_i| + \sigma I} v_i \quad \Rightarrow \quad s^T g < 0.$$

Compare to trust-region solution

$$s = \sum_{i=1}^{n} \frac{-v_i^T g}{\lambda_i + \sigma I} v_i \quad \Rightarrow \quad s^T g < 0.$$

where $\sigma > \lambda_i$. Emphasis on v_i corresponding to $\min |\lambda_i|$ versus $\min \lambda_i$.

LINE-SEARCH MODIFIED CG OBSERVATIONS (ZHOU 2009)

• Class of modifications that avoid restarts:

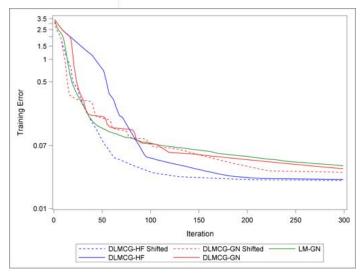
$$\hat{H} = H + \sigma_k r_k r_k^T$$

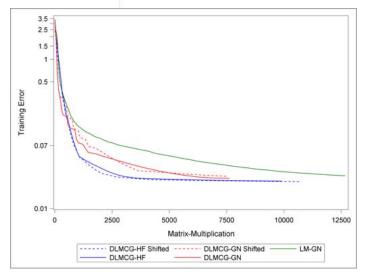
where $r_k = Hs_k + g$. (O'Leary 1982, Nash 1984)

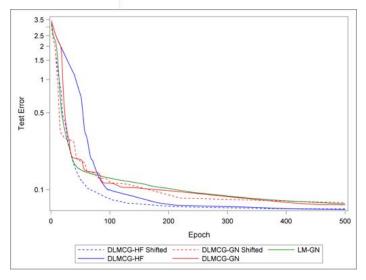
• Choose σ_k so that

$$\frac{p_k^T \hat{H} p_k}{p_k^T p_k} \le \lambda \|g\|$$

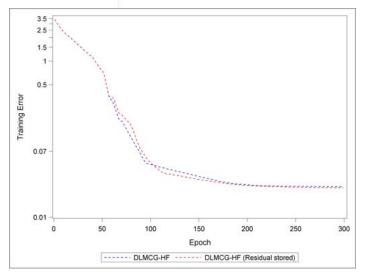
- Can then show trust-region strength convergence
- No need to store $\{r_k \mid \sigma_k \neq 0\}$
- Works seamlessly in Levenberg-Marquardt framework











TRUST-REGIONSUCCESSIVE SUBSPACE METHODSMETHOD(SSM)

- Starts where the Steihaug-Toint (ST) method stops
- Small overhead compared to CG after ST point
- Use evolving small dimensional subspaces

 $\{W_1, W_2, \ldots\}$ where $W_j \in \mathbb{R}^{n \times k}, k \leq 4$.

Uses Moré and Sorensen on

$$\min_{\substack{u \\ \|Wu\|_2 \le \delta_k}} u^T (W^T g) + \frac{1}{2} u^T (W^T H W) u,$$
 (1)

Use LAPACK to solve

$$\begin{array}{ll} \underset{z}{\text{minimize}} & z^{T} (W^{T} H W) z, \\ \| W z \|_{2}^{z} = 1 \end{array}$$
(2)

Sas Hower

TRUST-REGION METHOD

FUNDAMENTAL SSM THEOREM

Theorem (Convergence Hager)

Suppose at each iteration

$$\operatorname{span}(s_k, Hs_k + g, v^*) \subset \operatorname{span}(W_k)$$

where

$$v^* = \arg\min\frac{v^T H v}{v^T v}$$

then $s \rightarrow s^*$, the global trust-region subproblem solution!

Approximating *v* on the fly typically more than sufficient Implementations: (Hager 2001), (G. 2005), (Erway, Gill, G. 2007), (Erway, Gill 2008)

TRUST-REGION METHOD

CONCLUSION

Trust-region line-search methods suggested that:

- Accuracy controlled by solver not problem geometry
- Recursive updates, low overhead
- (a) Warm-starts, $s_0^j = s_k^{j-1}$
- Preconditioner not tied to elliptic norm/matrix shift

 $\hat{H} = H + \lambda I$, where $I \neq P$.

- **O Descent direction guaranteed:** $s_k^T \nabla f(w) < 0$
- Naturally reduces to CG on Newton's method

TRUST-REGION METHOD FUTURE WORK

- Numerical results for SSM method class
- Mini-batching
- Hybrids: only need second-order for initial iterations
- New class of algorithms for "symmetric linear" functions:
 - ▶ $H(w): R^n \to R^n$ does not always behave like a matrix
 - $\bullet |w^T H(y) y^T H(w)| \gg \epsilon$
 - H(w) = H + noise
 - Not all book-keeping tricks may be applicable
 - MCG-LS may have advantage over SSM-TR
 - Is it a bug?

http://support.sas.com/or

Unconventional iterative methods for nonconvex optimization in a matrix-free environment

