
Linear	Time	Second	Order	Stochastic	Optimization
for	Machine	Learning

Naman Agarwal							Brian	Bullins								Elad	Hazan

ML	optimization

• Single	Neuron:

• Logistic	/	Ridge	regression,	SVMs,	Deep	Neural	Nets

• training	set	size	(m)	&	dimension	of	data	(d)	are	very	large	
• Training	time	measured	in	weeks (speech	recognition,	images…)

𝑎𝑟𝑔𝑚𝑖𝑛'∈)*		 , 𝑙 𝑤/𝑥1,𝑦1
145	67	8

+ |𝑤|;

First	Order	Methods	

• Gradient	Descent yt+1

xt+1 xt

• Stochastic	Gradient	Descent
• Sample	𝑓1 randomly	and	take	a	step	according	to	-𝛻𝑓1	

𝑦6 = 𝑥6 	− 𝜂𝛻𝑓(𝑥6)

𝑂 𝑚𝑑 per	step	

𝑂(𝑑) per	step		
Project

−𝛻𝑓6

Gradient	Descent	++	

• Accelerated	Gradient	Descent	(Nesterov)
• Use	momentum	from	previous	steps	to	take	bigger	steps

• Adaptive	Regularization
• Adagrad (Duchi,	Hazan,	Singer),	etc…

• Variance	Reduction	
• SVRG	(Johnson	and	Zhang;		Mahdavi,	Zhang,Jin)	/	SAG,SAGA	(Schmidt,	LeRoux,	
Bach)
• Dual	Coordinate	Ascent	(Shalev-Shwartz&	Zhang)

• Are	we	at	the	limit	?	
• Beyond	first	order	necessary?	

Higher	Order	Optimization	

• Gradient	Descent	– Direction	of	Steepest	Descent
• Second	Order	Methods	– Use	Local	Curvature

Higher	Order	Optimization

𝑥5

𝑥;

𝑥E

𝑥6F5 = 𝑥6 	− 𝜂	[𝛻;𝑓(𝑥)]I5	𝛻𝑓(𝑥)

d3 time	per	iteration!
Infeasible	for	ML!!		

Till	now	J

Can	the	matrix	inversion	be	sped-up??

• Spielman-Teng ‘04:	diagonally	dominant	systems	of	equations	in	linear	
time!	
• 2015	Godel prize		
• Used	by	Daitch-Speilman for	faster	flow	algorithms

• Erdogu-Montanari ‘15:	low	rank	approximation	&	inversion	by	Sherman-
Morisson
• Allow	stochastic	information
• Still	prohibitive:		rank	*	d2

• Concurrently:	Agarwal,	Langford,	Luo:	faster,	linear-time	low-rank	sketching	
(online	setting)	

Our	results

• LiSSA
• Natural Stochastic	Newton	Method
• Every	iteration	in	O(d) time.	Linear	in	Input	Sparsity
• 𝐥𝐨𝐠 𝟏

𝝐 iterations		(Linear	Convergence)
• Better	dependence	on	the	condition	number
• better	local	convergence	than	known	FO	methods	empirically

• LiSSA ++
• better	condition	number	
• Couple	with	Matrix	Sampling/	Sketching	techniques	- Best	known	running	
time for	𝒎≫ 𝒅

Overview	of	Running	Times

Algorithm	 Running Time

Gradient	Descent	 𝑚𝑑𝜅 log
1
𝜖

Accelerated Gradient	Descent	 𝑚𝑑 𝜅 log
1
𝜖

SVRG/SAGA/SDCA	 𝑚 +𝑂 𝜅 𝑑 log
1
𝜖

LiSSA 𝑚 +𝑂 𝜅X 𝑉 	𝑑 log
1
𝜖	

Accelerated SDCA	/	Catalyst 𝑚+𝑂 𝜅𝑚	 𝑑 log
1
𝜖

LiSSA ++ 𝑂 𝑚 +𝑂 𝜅𝑑 𝑑 log;
1
𝜖	

Making	Second	Order	Stochastic	

• Easy	to	get	an	unbiased	estimator	of	the	Hessian

	𝛻;𝑓Z = 𝛻;𝑓1													𝑖		~	𝑢𝑛𝑖𝑓𝑜𝑟𝑚	[1,𝑚]

𝐸 𝛻;𝑓Z = 𝛻;𝑓

• But	
𝐸 𝛻;𝑓Z I5 ≠ 	𝛻;𝑓	I5

Nevertheless,	used	recently	in	NewSamp
(Erdogdu &	Montanari)

Our	Approach	– circumvent	inversion!

• The	Neumann	Series/	Taylor	Expansion	of	the	Inverse

• For	𝑀 ≽ 0, ||	𝑀	|| ≤ 1
𝑀I5 = , 𝐼	 −𝑀 1

14e	67	f

• Thus:

𝐸 𝛻;𝑓Z I5𝛻𝑓 =, 𝐼 − 𝛻; 1𝛻	 =	𝐸g∼i j 𝐼 − 𝛻g;Z 𝛻
g45	67	k1

For	any	distribution	 on	
naturals		𝑘 ∼ 𝑁

Vector-vector	
products	only

Improved	Estimator

• Previously,	Estimate	a	single	term	in	one	estimate

𝑀I5 = 𝐼 + (𝐼	 − 𝑀)(𝐼	 + 𝐼 − 𝑀 	(𝐼	 +	 … .p
67	f

))

• Recursive	Reformulation	of	the	series

• Truncate	after	𝑆; steps.	Typically		𝑆;	~	𝜅

𝑀I5 = 𝐼 + (𝐼	 − 𝑀)(𝐼	 + 𝐼 − 𝑀 	(𝐼	 +	 … .p
67	rs

))𝑀I5 = 𝐼 + (𝐼	 − 𝑀)(𝐼	 + 𝐼 −𝑀 	 	𝐼	 +	… .
)tuvwx1yt	tx618z6t		{|s}~

}~�
)𝑀rs

I5 = 𝐼 + (𝐼	 − 						𝑀					
���.	rz8��t

)(𝑀rsI5
I5�)

• 𝐸 𝑀rs
I5� → 𝑀I5 as			S;→ ∞

• Repeat	and	average	to	reduce	the	variance

Linear	time	step

• Need	to	compute	the	Newton	direction

𝑀I5�	𝛻𝑓 = 𝐼 + 𝐼	 − 𝑀�	 	….	 𝛻f

• Reduces	to	computing	𝑀�𝛻𝑓	quickly	

• O(d) if	loss	is	of	the	form		𝑙(𝑤/𝑥, 𝑦)

• Hessian		is	of	the	form	−	g x, y 	𝑥𝑥/
matrix-vector	product	→ vector-vector	product
input	sparsity	time	!!

LiSSA –
Linear-time	Second-order	Stochastic	Algorithm

• Use	the	estimator	𝛻I;𝑓� defined	previously	
• Compute	a	full	(large	batch)	gradient		𝛻f	
• Move	in	the	direction	𝛻I;𝑓� 	𝛻𝑓
• Start	with	a	few	Gradient	Descent	Steps

Main	Theorem	– (not	++)

• V	is	a	bound	on	the	variance	of	the	estimator
• In	Practice		- a	small	constant	(e.g.	1)
• In	Theory	- 𝑉 ≤ 𝜅;

For	large	t,	LiSSA returns	a	point	in	the	parameter	space	𝑤6 s.t.

𝑓 𝑤6 ≤ 		𝑓 𝑤∗ + 𝜖

In	total	time	log 5
�
	𝑑	(𝑚 + 𝑂 𝜅 		𝑉)

Theorem	1

Analysis:	
Newton	~	Iterative	Mirrored	Descent

Newton:		𝑥6F5 ← 𝑥6 − 𝛻I;𝑓 𝑥6 𝛻𝑓 𝑥6
𝛻𝑅 𝑥6F5 ← 𝛻𝑅 𝑥6 − 𝛻𝑓 𝑥6 for	𝑅 𝑥 = 𝑥/𝛻;𝑓 𝑥6 𝑥	

Local	vs	Global	Condition	Number	

• For	GD++,	condition	number	is	defined	by	the	smoothness	and	strong	
convexity	parameters

	||	𝛻;𝑓(𝑥)	|| ≤ 𝛽
	||	𝛻;𝑓(𝑥)	|| ≥ 𝛼 𝑀𝑢𝑠𝑡	ℎ𝑜𝑙𝑑	∀𝑥 𝜅��7�z� =

𝛽
𝛼

• For	LiSSA,	condition	number	of	the	local	quadratic	

𝜅�7uz� = max
¡

𝜅(𝛻;𝑓(𝑥))

•In	practice	– A	difference	factor	of	up	to	10	between	𝜅�7uz� 	𝑣𝑠	𝜅��7�z�

≤ 𝜅��7�z�

Experimental	Results	- convex

Comparison	b/w	Second	Order	Methods

LiSSA:	Alternative	Interpretation	

• Variance	adjusted	SGD	on	the	local	quadratic	approximation
• Quadratic	Approximation	of	𝑓 𝑥 around	a	point

Q y = 	𝛻𝑓 𝑥 /𝑦 + y¤	𝛻;𝑓(𝑥)	𝑦	

𝛻𝑄 𝑦 = 𝛻𝑓 𝑥 + 𝛻;𝑓 𝑥 𝑦

𝑦	 − 𝛻𝑄 𝑦 = I	 − 𝛻;𝑓 𝑥 𝑦	 − 𝛻𝑓(𝑥)𝑦	 − 𝛻𝑄 𝑦 = I	 − 𝛻;𝑓 𝑥
tx618z6t

𝑦	 − 𝛻𝑓 𝑥
§1¡t�

𝛻𝑄 𝑦 = 𝛻𝑓 𝑥 + 𝛻;𝑓 𝑥
tx618z6t

𝑦Exactly	Corresponds	to	
LiSSALiSSA	⇔ SGD	on	a	Quadratic	

Acts	as	Variance	Reduction

LiSSA+

• Use	FO	algorithms	(SVRG/SDCA)	for	intermediate	quadratic
• Need	to	solve	each	quadratic	upto error	ϵ
• Total	of	log log 5

�
quadratic	sub	problems

• Total	time	– 𝑇𝑖𝑚𝑒 𝐹𝑂 log log 5
�

• Better	conditioned	than	the	original
• Faster	running	time	in	practice

LiSSA ++	(Motivation)

• Why	run	FO	on	the	quadratic	approximation	when	full	𝑓(𝑥) is	
available	?
• Better	Conditioning
• Can	use	special	quadratic	structure	of	the	problem	
• Make	use	of	Matrix	Sampling	and	Sketching	Techniques

LiSSA ++	Overview

m

d

=
𝑂­(𝑑)

d

=𝑂­ 𝑑 𝑚 + 𝜅𝑑

𝑂­ 𝑑 𝑑 + 𝜅𝑑 log;
1
𝜖

𝑂­ 𝑑 𝑚+ 𝜅𝑑 log;
1
𝜖

• Recursive	Uniform	Sampling	(Lee+Sidford)
• Time	– Input	+	O(1)	Linear	systems	in	
O(𝑑 log𝑑)	

• Can	use	FO	on	those	systems	

LiSSA++	Theorem

For	large	t,	LiSSA++	returns	a	point	in	the	parameter	space	𝑤6 s.t.

𝑓 𝑤6 ≤ 		𝑓 𝑤∗ + 𝜖

In	total	time	𝑂­ log; 5
�
	𝑑	 𝑚 + 𝜅𝑑

Theorem	2

• Fastest over	all	running	time	for	when	𝜅,𝑚 ≫ 𝑑	

2nd order	information:	new	phenomena?

• escape	saddle	points?

• ”Computational	lens	for	deep	nets”:
experiment	with	2nd order	
information:	
• Trust	region
• Cubic	regularization
• Eigenvalue	methods….	

Bengio-group	 experiment

Follow-up	work	
(w.	Naman,	Brian	&	Tengyu)	

• Apply	to	train	deep	nets	– non-convex	optimization

• Can	implement	variants	that	are	reasonable	(trust	region	etc.)	using	
LiSSA techniques

• Theory	works	(w.	the	Pearlmuter trick)

• practice	- doesn’t	improve	upon	GD++	L

Bottou “say	what	doesn’t	work”

Summary

• LiSSA
• A	natural,	practical	and	efficient	Second	Order	Stochastic	Algorithm
• Empirically	faster	than	GD++	on	real	world	datasets

• LiSSA++
• Fastest	running	time	known	theoretically
• Better	dependence	on	the	condition	number	

• 2nd order	information	doesn’t	seem	to	improve	performance	
for	deep	nets	(so	far)

