Linear Time Second Order Stochastic Optimization
for Machine Learning

Naman Agarwal Brian Bullins Elad Hazan

PRINCETON
N UNIVERSITY

ML optimization

* Single Neuron:

T e e argmin,,epd z L(w'x;,y;) + [w|?
' @ i=1tom
InputN Sigrmoid

* Logistic / Ridge regression, SVMs, Deep Neural Nets

* training set size (m) & dimension of data (d) are very large
* Training time measured in weeks (speech recognition, images...)

First Order Methods

e Gradient Descent 0 (md) per step

Ve = X¢ —NVf(xe) Xt

Project

0 (d) per step

e Stochastic Gradient Descen
* Sample f; randomly and take a step accordingto -V f;

Gradient Descent ++

e Accelerated Gradient Descent (Nesterov)
* Use momentum from previous steps to take bigger steps

* Adaptive Regularization
* Adagrad (Duchi, Hazan, Singer), etc...

e Variance Reduction

* SVRG (Johnson and Zhang; Mahdavi,Zhang,Jin) / SAG,SAGA (Schmidt, LeRoux,
Bach)

* Dual Coordinate Ascent (Shalev-Shwartz & Zhang)

e Are we at the limit ?

* Beyond first order necessary?

Higher Order Optimization

e Gradient Descent — Direction of Steepest Descent
e Second Order Methods — Use Local Curvature

Higher Order Optimization

-
-~
~~o
’,'
’,"
"'
"l
S
S
~
~
~
l,
~

l ,
I ,
// ¢/
\ /
/ ' on
¢/
U4
|||||||||||| .vm_ul \w\
o
\\\\ \\‘\
Lo
=
~ =
= c .
= =
=
> S e
— U =
[-
~ L — O
&= o O -
- Q % —
e E o =
N g =
| I— d
<
_
LS}
=
I
—
+
o
=

Can the matrix inversion be sped-up??

. Spiel:ﬂan-Teng ‘04: diagonally dominant systems of equationsin linear
time!
e 2015 Godel prize
* Used by Daitch-Speilman for faster flow algorithms

* Erdogu-Montanari ‘15: low rank approximation & inversion by Sherman-
Morisson
* Allow stochasticinformation
« Still prohibitive: rank * d?

* Concurrently: Agarwal, Langford, Luo: faster, linear-time low-rank sketching
(online setting)

Our results

* LiSSA
* Natural Stochastic Newton Method
e Every iterationin O(d) time. Linear in Input Sparsity

* log (%) iterations (Linear Convergence)

* Better dependence on the condition number
* better local convergence than known FO methods empirically

e LiSSA ++

 better condition number

* Couple with Matrix Sampling/ Sketching technigues - Best known running
timeform > d

Overview of Running Times

Gradient Descent

dk log—
mdxk og‘E
Accelerated Gradient Descent 1
d+/k log—
md+/k 08—
SVRG/SAGA/SDCA 1
0 dlog—
(m +0G))d log—
LiSSA 1
(m+0(&HV)d logg
Accelerated SDCA / Catalyst 1
0 dlog—
(m+ (\/Km)) 08—

' 1
HRSA 0 (m + 0(\/@)) dlog? -

Making Second Order Stochastic

* Easy to get an unbiased estimator of the Hessian
V2f = V2f, i ~uniform [1,m]

E[VZf] = Vf

* But
E[VZf=1] = v2f

Nevertheless, used recently in NewSamp

(Erdogdu & Montanari)

Our Approach — circumvent inversion!
* The Neumann Series/ Taylor Expansion of the Inverse

“ForM > 0,|| M| <1 |
M1 = 2 (I — M)

=0 to o©
* Thus:

E[7Zfvf]=) U=v)'7 = By || (1-)9

k=1toq
For any distribution on Vec(';or—;/ectcl)r
naturals k ~ N products only

Improved Estimator

* Previously, Estimate a single term in one estimate
* Recursive Reformulation of the series

Mt =1+ (I — M)(HH@ MO +))

Ind. SEPi% ive estimate M Stzij_%

* Truncate after S, steps. Typically S, ~ k

. E[Ms‘zll - M 1as S,»
* Repeat and average to reduce the variance

Linear time step

* Need to compute the Newton direction
Mvf=(1+(1 —M)(..)) vt

* Reduces to computing 1\7}\7f quickly

« O(d) if loss is of the form [(w!x,y)

* Hessian is of the form — g(x,y) xx7

matrix-vector product — vector-vector product
input sparsity time !!

LISSA —

Linear-time Second-order Stochastic Algorithm

————

* Use the estimator V—2f defined previously
 Compute a full (large batch) gradient Vf

* Move in the direction V=2f Vf
e Start with a few Gradient Descent Steps

Main Theorem — (not ++)

Theorem 1
For large t, LISSA returns a point in the parameter space w; s.t.

fw) = f(w")+e

In total time log (1) d(m+0(k) V)

€

* Vis a bound on the variance of the estimator
* In Practice - asmall constant (e.g. 1)
*In Theory-V < k?

Analysis:
Newton ™~ Iterative Mirrored Descent

(a7,
-

Newton: x;.; < x, — V 2f(x)Vf(x,) "
VR(x¢41) < VR(x) — Vf(x,) for R(x) = x"V*f(x)x

Local vs Global Condition Number

* For GD++, condition number is defined by the smoothness and strong
convexity parameters

& <
1PSONSE ucholavs -

RI™™

* For LiSSA, condition number of the local quadratic

Kiocal = manK(sz(x)) = Kglobal

*In practice — A difference factor of up to 10 between kj,cq1 VS Kgiopai

Experimental Results - convex

LR, Mushrooms, Lambda = 1E-3

log(error)

4 6 8 10 12 14
epochs

LR, Mushrooms, Lambda = 1E-4

loglerror)

epochs

log(error)

log(error)

LR, MNIST, Lambda = 1E-3

4 6 8 10
epochs

LR, MNIST, Lambda = 1E-4

epochs

log(error)

log(error)

LR, Covertype, Lambda = 1E-4

-14
0 2 4 6 8 10
epochs
o LR, Covertype, Lambda = 1E-5
-1
\
20\
\
.3 \
-~
-4 ~
N
5 = RENNEA
& Y
\
N
7 ~
— — SAGA
8 SVRG
LiSSA

-9

0 2 4 6 8 10

epochs

Comparison b/w Second Order Methods

log(error)

LR, MNIST, Lambda = 1E-4 LR, MNIST, Lambda = 1E-4

0 0
2 | = - -
..4 L
6} (o
o
3
8} P4
.10 }
azl == Newton Method) — = Newton Method
NewSamp 12} - NewSamp
LISSA LISSA
14 14
0 2 - 6 8 10 0 1 2 3 -

Time (s) lterations

LISSA: Alternative Interpretation

* Variance adjusted SGD on the local quadratic approximation
 Quadratic Approximation of f(x) around a point

Q) = Vf(x) Ty +y' V2f(x) y

LiSSA & SGD on a Quadratic

y —7Q() = (I — @)y —T(6)

estimate Fixed

Acts as Variance Reduction

VQ(y) = Vf(x) + V2 f(x)w

estimate

LISSA+

* Use FO algorithms (SVRG/SDCA) for intermediate quadratic
* Need to solve each quadratic upto error €

* Total of loglog% quadratic sub problems

* Total time — Time(FO) loglogé

 Better conditionedthan the original

* Faster runningtime in practice

LiSSA ++ (Motivation)

* Why run FO on the quadratic approximation when full f (x) is
available ?

e Better Conditioning
e Can use special quadratic structure of the problem
* Make use of Matrix Sampling and Sketching Techniques

1
log? —
0g”

LISSA ++ Overview 6 (d(d +Vied))

d d

0 (d(m + \/ﬁ)) >5(d)

e Recursive Uniform Sampling (Lee+Sidford)

* Time —Input+ O(1) Linear systems in

i 1
0 (d(m + \/ﬁ)) log? — oldlogd)

e Can use FO on those systems

LiISSA++ Theorem

Theorem 2
For large t, LISSA++ returns a point in the parameter space w; s.t.

fwe) < f(w') + €
In total time O (log2 (E) d (m + \/ﬁ))

* Fastest over all running time for whenx,m > d

2"d order information: new phenomena??

* escape saddle points?

10°
,,,,,,,,,,,,,, minibatch SGD
. I T Damped Newton method
* “Computational lens for deep nets”: £ 10 w = _Saddle-Free Newton method
experiment with 29 order 5
information: 5 10
* Trust region

e Cubicregularization 107 10 20 30 40

Number of epochs
* Eigenvalue methods.... (b)

Bengio-group experiment

Follow-up work
(w. Naman, Brian & Tengyu)

* Apply to train deep nets — non-convex optimization

* Can implement variants that are reasonable (trust region etc.) using
LiSSA techniques

* Theory works (w. the Pearlmuter trick)

* practice - doesn’t improve upon GD++ ®

Bottou “say what doesn’t work”

loss

00 |]] 1
0 20 40 60 80 100

epochs

Summary

* LiSSA
* A natural, practical and efficient Second Order Stochastic Algorithm
* Empirically faster than GD++ on real world datasets

* LISSA++

e Fastest running time known theoretically
* Better dependence on the condition number

« 2"d order information doesn’t seem to improve performance
for deep nets (so far)

