
What’s so hard about
optimizing deep networks?

Benjamin Recht
University of California, Berkeley

What makes optimization of deep models hard?

Recent abstracts on arXiv:
“We prove that recovering the global minimum becomes harder as the network
size increases.” arXiv:1412.0233

“Difficulty originates from the proliferation of saddle points, not local minima,
especially in high dimensional problems of practical interest. ” arXiv:1406.2572

It’s hard to hit a saddle
f(x) =

1

2

d�

i=1

aix
2
i

x(k+1)
i = (1 � tai)x

(k)
iGradient descent:

x(k)
i = (1 � tai)

kx(0)
iAfter k steps

t|ai| < 1If
converges to 0 if all ai are positive

diverges almost surely if single ai is negative
{

It’s hard to hit a saddle
If you are not on the

line {x=-y}, you diverge
at an exponential rate

f(x, y) = xy

This picture fully generalizes to
the nonconvex case

Thm: [Lee et al, 2016] For the short-step gradient method, the
basin of attraction of strong saddle points has measure zero.

Simple consequence of the Stable Manifold Theorem (Smale et al)

This is our fault, optimizers.

• Too many fragile examples in
text books

• Minor perturbations in initial
conditions always repel you
from saddles.

f(x, y) = x4
1 � 2x2

1 + x2
2

Flatness is what makes things hard
• In convex-land, flat directions (ill-conditioning) slow

algorithms down.
• What happens in nonconvex-land?

Flatness is what makes things hard

�f(0) = 0

Deciding if there is a descent direction at 0 is NP-complete

Is 0 a global min, saddle, or global max?

• What happens in nonconvex-land?

�2f(0) = 0 f is super flat at 0.

f(x) =
d�

i,j=1

Qijx
2
i x

2
j

G has an clique of size larger than1/(1-s) if and only if
0 is not a local minimizer*.

Q = I � A + s · 11T

A = adjacency
matrix of G

Thm [Barak et al. 2016]: Finding a maximum clique is F-hard

* http://www.ti.inf.ethz.ch/ew/lehre/ApproxSDP09/notes/copositive.pdf

f(x) =
d�

i,j=1

Qijx
2
i x

2
j

http://www.ti.inf.ethz.ch/ew/lehre/ApproxSDP09/notes/copositive.pdf

Is deep learning as hard as maximum clique?

Thm: [Soudry and Carmon 2016]: For an L layer neural network
trained with dropout and with n < dL−2dL−1, any stable local minimum
is a global minimum with loss 0 almost surely.

How can you get to zero with
constant stepsize?

What does the test error look like?

If there is a solution where all
gradients vanish, constant
stepwise converges linearly

If you have more parameters
than unknowns, why would
you expect to converge to a
saddle?

Is there something special about
your initialization?

Avoiding overfitting is hard.
• This is true in the convex case too!

Sparsity Rank Smoothness Architecture

minimize �y � �x�2

Can/should we directly minimize overfitting?

• Φ n x p, n<p

• Infinite number of global minima. Which one
should we pick?

• Regularize to leverage struture.

`2-penalty � 2 [10�6, 10�1]

learning rate ⌘ 2 [10�3, 10�1]

hidden nodes Nhid 2 [10

1, 103]

\

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Eval-loss

bf

hyperparameters

Training set Eval set

Nin = 784

N
out

= 10

`2-penalty � 2 [10�6, 10�1]

learning rate ⌘ 2 [10�3, 10�1]

hidden nodes Nhid 2 [10

1, 103]

Nhid
\

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

bf

hyperparameters

Training set Eval set

\

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

How do we choose
hyperparameters to
train and evaluate?

Hyperparameters Eval-loss

Training set Eval set

Bayesian Optimization
Hyperparameters
adaptively chosen

1

2

3

4

5

6
7

8

9

10

11
12 13

14 15
16

Very popular for hyperparameter tuning

Recent abstracts on arXiv:
“Bayesian optimization has become a successful tool for hyperparameter
optimization of machine learning algorithms, such as support vector machines or
deep neural networks.” arXiv:1605.07079

“Bayesian optimization is an elegant solution to the hyperparameter
optimization problem in machine learning.” arXiv:1605.06170
“Bayesian optimization provides a principled way for searching optimal
hyperparameters for a single algorithm.” arXiv:1602.06468
“finds global optima significantly faster than previous batch Bayesian
optimization algorithms … when tuning hyperparameters of
practical machine learning algorithms” arXiv:1606.04414

\

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

epochs

ev
al

-lo
ss

How computation
time was spent?

Hyperparameters Eval-loss

Training set Eval set

\

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

epochs

ev
al

-lo
ss

Black-box solver
stopped short due
to lack of progress

Hyperparameters Eval-loss

Training set Eval set

\

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

epochs

ev
al

-lo
ss

But many of iterations
 wasted on “losers”

Hyperparameters Eval-loss

Training set Eval set

\

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

epochs

ev
al

-lo
ss

Can we identify and kill
“losers” early and focus

on “winners”?

Hyperparameters Eval-loss

Training set Eval set

k

`i,k

Sparks and Talwalkar heuristic…

Number of epochs

lo
ss

k

`i,k

Number of epochs

lo
ss

Sparks and Talwalkar heuristic…

k

`i,k

Number of epochs

lo
ss

Sparks and Talwalkar heuristic…

k

`i,k

Number of epochs

lo
ss

Sparks and Talwalkar heuristic…

Input: max_iter
for s=log3(max_iter), … , 1, 0:

n = 3s (logη(max_iter)+1)/(s+1), r = max_iter 3-s

batch = [get_hyperparameter_config() for i=1, …, n]
for i=0, …, log3(max_iter/r):

ni = n 3-i, ri = r 3i

for params in batch:
run_and_get_val_loss(config=params , iters= ri)

Throw out worst 2/3 ni configurations
Return remaining configs in batch

HyperBand

n >
HyperBand

Bn max_iter=
Uniform Allocation

B
(log3(max_iter)+1)2

“The balance between theory and practice in
nonlinear programming is particularly delicate,

subjective, and problem dependent” - D. Bertsekas

References
• argmin.net
• “Gradient Descent Converges to Minimizers.” Jason D. Lee, Max Simchowitz,

Michael I. Jordan, and Benjamin Recht. COLT 2016, arXiv: 1602.04915
• Lecutre Notes on Approximation Algorithms and Semidefinite

Programming. Bernd Gärtner and Jiří Matoušek. 2009. http://
www.ti.inf.ethz.ch/ew/lehre/ApproxSDP09/index.html

• “A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique
Problem.” Boaz Barak, Samuel B. Hopkins, Jonathan Kelner, Pravesh K. Kothari,
Ankur Moitra, Aaron Potechin. arXiv:1604.03084

• “No bad local minima: Data independent training error guarantees for
multilayer neural networks.” Daniel Soudry and Yair Carmon. arXiv:
1605.08361

• “Efficient Hyperparameter Optimization and Infinitely Many Armed Bandits.”
Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. arXiv:1603.06560

http://argmin.net

