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What makes optimization of deep models hard?

Recent abstracts on arXiv:
“We prove that recovering the global minimum becomes harder as the network 
size increases.” arXiv:1412.0233

“Difficulty originates from the proliferation of saddle points, not local minima, 
especially in high dimensional problems of practical interest. ” arXiv:1406.2572 
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It’s hard to hit a saddle
If you are not on the 

line {x=-y}, you diverge 
at an exponential rate

f(x, y) = xy

This picture fully generalizes to 
the nonconvex case

Thm: [Lee et al, 2016] For the short-step gradient method, the 
basin of attraction of strong saddle points has measure zero.

Simple consequence of the Stable Manifold Theorem (Smale et al)



This is our fault, optimizers.

• Too many fragile examples in 
text books

• Minor perturbations in initial 
conditions always repel you 
from saddles.
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Flatness is what makes things hard
• In convex-land, flat directions (ill-conditioning) slow 

algorithms down. 
• What happens in nonconvex-land?



Flatness is what makes things hard

�f(0) = 0

Deciding if there is a descent direction at 0 is NP-complete

Is 0 a global min, saddle, or global max?

• What happens in nonconvex-land?

�2f(0) = 0 f is super flat at 0.
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G has an clique of size larger than1/(1-s) if and only if 
0 is not a local minimizer*.

Q = I � A + s · 11T

A = adjacency 
matrix of G

Thm [Barak et al. 2016]: Finding a maximum clique is F-hard

* http://www.ti.inf.ethz.ch/ew/lehre/ApproxSDP09/notes/copositive.pdf
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Is deep learning as hard as maximum clique?

Thm: [Soudry and Carmon 2016]: For an L layer neural network 
trained with dropout and with n < dL−2dL−1, any stable local minimum 
is a global minimum with loss 0 almost surely.



How can you get to zero with 
constant stepsize?

What does the test error look like?

If there is a solution where all 
gradients vanish, constant 
stepwise converges linearly

If you have more parameters 
than unknowns, why would 
you expect to converge to a 
saddle?

Is there something special about 
your initialization?









Avoiding overfitting is hard.
• This is true in the convex case too!

Sparsity Rank Smoothness Architecture

minimize �y � �x�2

Can/should we directly minimize overfitting?

• Φ n x p, n<p

• Infinite number of global minima. Which one 
should we pick?

• Regularize to leverage struture.
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How do we choose 
hyperparameters to 
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Bayesian Optimization
Hyperparameters
adaptively chosen
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Very popular for hyperparameter tuning

Recent abstracts on arXiv:
“Bayesian optimization has become a successful tool for hyperparameter 
optimization of machine learning algorithms, such as support vector machines or
deep neural networks.” arXiv:1605.07079

“Bayesian optimization is an elegant solution to the hyperparameter 
optimization problem in machine learning.” arXiv:1605.06170
“Bayesian optimization provides a principled way for searching optimal 
hyperparameters for a single algorithm.” arXiv:1602.06468
“finds global optima significantly faster than previous batch Bayesian 
optimization algorithms … when tuning hyperparameters of 
practical machine learning algorithms” arXiv:1606.04414
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How computation 
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Black-box solver 
stopped short due 
to lack of progress
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But many of iterations
 wasted on “losers” 
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Can we identify and kill
“losers” early and focus 

on “winners”? 
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Input: max_iter 
for s=log3(max_iter), … , 1, 0:

n = 3s  (logη(max_iter)+1)/(s+1),   r = max_iter 3-s

batch = [ get_hyperparameter_config() for i=1, …, n ] 
for i=0, …, log3(max_iter/r):

ni = n 3-i,   ri = r 3i

for params in batch:
run_and_get_val_loss(config=params , iters= ri)

Throw out worst  2/3 ni   configurations
Return remaining configs in batch

HyperBand

n >
HyperBand

Bn max_iter=
Uniform Allocation

B
(log3(max_iter)+1)2





“The balance between theory and practice in 
nonlinear programming is particularly delicate, 

subjective, and problem dependent” - D. Bertsekas
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