What's so hard about optimizing deep networks?

Benjamin Recht University of California, Berkeley

What makes optimization of deep models hard?

Recent abstracts on arXiv:

"We prove that recovering the global minimum becomes harder as the network size increases." arXiv:1412.0233

"Difficulty originates from the proliferation of saddle points, not local minima, especially in high dimensional problems of practical interest." arXiv:1406.2572

It's hard to hit a saddle

$$f(x) = \frac{1}{2} \sum_{i=1}^{d} a_i x_i^2$$

Gradient descent: $x_i^{(k+1)} = (1 - ta_i)x_i^{(k)}$

After k steps
$$x_i^{(k)} = (1 - ta_i)^k x_i^{(0)}$$

If $t|a_i| < 1$

converges to 0 if all a_i are positive

diverges almost surely if single a_i is negative

It's hard to hit a saddle

If you are not on the line $\{x=-y\}$, you diverge at an exponential rate

This picture fully generalizes to the nonconvex case

Thm: [Lee et al, 2016] For the short-step gradient method, the basin of attraction of strong saddle points has measure zero.

Simple consequence of the Stable Manifold Theorem (Smale et al)

This is our fault, optimizers.

- Too many fragile examples in text books
- Minor perturbations in initial conditions always repel you from saddles.

 $f(x,y) = x_1^4 - 2x_1^2 + x_2^2$

Flatness is what makes things hard

- In convex-land, flat directions (ill-conditioning) slow algorithms down.
- What happens in nonconvex-land?

Flatness is what makes things hard

• What happens in nonconvex-land?

$$f(x) = \sum_{i,j=1}^{d} Q_{ij} x_i^2 x_j^2$$

 $\nabla f(0) = 0$ Is 0 a global min, saddle, or global max?

$$abla^2 f(0) = 0$$
 f is super flat at 0.

Deciding if there is a descent direction at 0 is NP-complete

 $f(x) = \sum^{d} Q_{ij} x_i^2 x_j^2$ i, j=1

 $Q = I - A + s \cdot \mathbf{1}\mathbf{1}^T$

G has an clique of size larger than I/(I-s) if and only if 0 is not a local minimizer*.

Thm [Barak et al. 2016]: Finding a maximum clique is F-hard

* http://www.ti.inf.ethz.ch/ew/lehre/ApproxSDP09/notes/copositive.pdf

Is deep learning as hard as maximum clique?

Thm: [Soudry and Carmon 2016]: For an L layer neural network trained with dropout and with $n < d_{L-2}d_{L-1}$, any stable local minimum is a global minimum with loss 0 almost surely.

How can you get to zero with constant stepsize?

If there is a solution where all gradients vanish, constant stepwise converges linearly

Is there something special about your initialization?

If you have more parameters than unknowns, why would you expect to converge to a saddle?

What does the test error look like?

Avoiding overfitting is hard.

• This is true in the convex case too!

minimize
$$||y - \Phi x||^2$$

0.6

0.6

0.5

0.5

- Φ n x p, n<p
- Infinite number of global minima. Which one should we pick?
- Regularize to leverage struture.

Can/should we directly minimize overfitting?

 $(10^{-1.6}, 10^{-2.4}, 10^{1.7})$

hyperparameters learning rate $\eta \in [10^{-3}, 10^{-1}]$ ℓ_2 -penalty $\lambda \in [10^{-6}, 10^{-1}]$ # hidden nodes $N_{hid} \in [10^1, 10^3]$

Hyperparameters	12 12 12
$(10^{-1.6}, 10^{-2.4}, 10^{1.7})$	
$(10^{-1.0}, 10^{-1.2}, 10^{2.6})$	
$(10^{-1.2}, 10^{-5.7}, 10^{1.4})$	
$(10^{-2.4}, 10^{-2.0}, 10^{2.9})$	
$(10^{-2.6}, 10^{-2.9}, 10^{1.9})$	
$(10^{-2.7}, 10^{-2.5}, 10^{2.4})$	
$(10^{-1.8}, 10^{-1.4}, 10^{2.6})$	
$(10^{-1.4}, 10^{-2.1}, 10^{1.5})$	
$(10^{-1.9}, 10^{-5.8}, 10^{2.1})$	
$(10^{-1.8}, 10^{-5.6}, 10^{1.7})$	

Eval-loss
0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

How do we choose hyperparameters to train and evaluate?

Bayesian Optimization

Very popular for hyperparameter tuning

Recent abstracts on arXiv:

"Bayesian optimization has become a successful tool for hyperparameter optimization of machine learning algorithms, such as support vector machines or deep neural networks." arXiv:1605.07079

"Bayesian optimization is an **elegant solution to the hyperparameter optimization problem** in machine learning." arXiv:1605.06170

"Bayesian optimization provides a **principled way for searching optimal hyperparameters** for a single algorithm." arXiv:1602.06468

"finds global optima significantly **faster than previous batch Bayesian optimization algorithms ... when tuning hyperparameters** of practical machine learning algorithms" arXiv:1606.04414

000000000000000000000000000000000000000	00
///////////////////////////////////////	1)
2222222222222	22
832333333333	33
441 Training cot	44
<pre></pre>	55
6666666666666	66
7777777777777	77
8888888888888888	88
29999999999999	99

Hyperparameters $(10^{-1.6}, 10^{-2.4}, 10^{1.7})$ $(10^{-1.0}, 10^{-1.2}, 10^{2.6})$ $(10^{-1.2}, 10^{-5.7}, 10^{1.4})$ $(10^{-2.4}, 10^{-2.0}, 10^{2.9})$ $(10^{-2.6}, 10^{-2.9}, 10^{1.9})$ $(10^{-2.7}, 10^{-2.5}, 10^{2.4})$ $(10^{-1.8}, 10^{-1.4}, 10^{2.6})$ $(10^{-1.4}, 10^{-2.1}, 10^{1.5})$ $(10^{-1.9}, 10^{-5.8}, 10^{2.1})$ $(10^{-1.8}, 10^{-5.6}, 10^{1.7})$

00000	0000	00000
22222	2222	22222
833 <u>33</u> 441	3333	333333
¢5, Ira	aining	set 55
06000 77772	2777	77977
88888	8888	88888
19999	99999	99999

Eval-loss Hyperparameters $(10^{-1.6}, 10^{-2.4}, 10^{1.7})$ 0.0577 $(10^{-1.0}, 10^{-1.2}, 10^{2.6})$ 0.182 $(10^{-1.2}, 10^{-5.7}, 10^{1.4})$ 0.0436 $(10^{-2.4}, 10^{-2.0}, 10^{2.9})$ 0.0919 $(10^{-2.6}, 10^{-2.9}, 10^{1.9})$ 0.0575 $(10^{-2.7}, 10^{-2.5}, 10^{2.4})$ 0.0765 $(10^{-1.8}, 10^{-1.4}, 10^{2.6})$ 0.1196 $(10^{-1.4}, 10^{-2.1}, 10^{1.5})$ 0.0834 $(10^{-1.9}, 10^{-5.8}, 10^{2.1})$ 0.0242 $(10^{-1.8}, 10^{-5.6}, 10^{1.7})$ 0.029

0000000000000000	00
	1)
2222222222222	22
33 4 5 3 3 4 5 2 3 3 4	33
Training set	74
66666666666	66
77777777777777	77
888888888888	88
29999999999999	99

Hyperparameters	Eval-loss
$(10^{-1.6}, 10^{-2.4}, 10^{1.7})$	0.0577
$(10^{-1.0}, 10^{-1.2}, 10^{2.6})$	0.182
$(10^{-1.2}, 10^{-5.7}, 10^{1.4})$	0.0436
$(10^{-2.4}, 10^{-2.0}, 10^{2.9})$	0.0919
$(10^{-2.6}, 10^{-2.9}, 10^{1.9})$	0.0575
$(10^{-2.7}, 10^{-2.5}, 10^{2.4})$	0.0765
$(10^{-1.8}, 10^{-1.4}, 10^{2.6})$	0.1196
$(10^{-1.4}, 10^{-2.1}, 10^{1.5})$	0.0834
$(10^{-1.9}, 10^{-5.8}, 10^{2.1})$	0.0242
$(10^{-1.8}, 10^{-5.6}, 10^{1.7})$	0.029

000000000000000000000000000000000000000	00
///////////////////////////////////////	1)
2222222222222	22
83333333333	33
441 Training cot	44
<pre></pre>	55
666666666666	66
7777777777777	77
8888888888888888	88
29999999999999	99

Hyperparameters	Eval
$(10^{-1.6}, 10^{-2.4}, 10^{1.7})$	0.05
$(10^{-1.0}, 10^{-1.2}, 10^{2.6})$	0.18
$(10^{-1.2}, 10^{-5.7}, 10^{1.4})$	0.04
$(10^{-2.4}, 10^{-2.0}, 10^{2.9})$	0.09
$(10^{-2.6}, 10^{-2.9}, 10^{1.9})$	0.05
$(10^{-2.7}, 10^{-2.5}, 10^{2.4})$	0.07
$(10^{-1.8}, 10^{-1.4}, 10^{2.6})$	0.11
$(10^{-1.4}, 10^{-2.1}, 10^{1.5})$	0.08
$(10^{-1.9}, 10^{-5.8}, 10^{2.1})$	0.02
$(10^{-1.8}, 10^{-5.6}, 10^{1.7})$	0.02

Eval-loss
0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

<u>HyperBand</u>

Input: max iter for $s = \log_3(\max \text{ iter}), \ldots, 1, 0$: $n = 3^{s} (\log_{n}(\max iter) + 1)/(s+1), r = \max iter 3^{-s}$ $batch = [get_hyperparameter_config() for i=1, ..., n]$ for $i=0, \ldots, \log_3(\max iter/r)$: $n_i = n 3^{-i}$, $r_i = r 3^{i}$ for params in batch: run_and_get_val_loss(config=params, iters= r_i) Throw out worst 2/3 n_i configurations Return remaining configs in batch

"The balance between theory and practice in nonlinear programming is particularly delicate, subjective, and problem dependent" - D. Bertsekas

References

• <u>argmin.net</u>

- ''Gradient Descent Converges to Minimizers.'' Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. COLT 2016, arXiv: 1602.04915
- Lecutre Notes on Approximation Algorithms and Semidefinite Programming. Bernd G\u00e4rtner and Ji\u00e7\u00e5 Matou\u00e3ek. 2009. http:// www.ti.inf.ethz.ch/ew/lehre/ApproxSDP09/index.html
- "A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique Problem." Boaz Barak, Samuel B. Hopkins, Jonathan Kelner, Pravesh K. Kothari, Ankur Moitra, Aaron Potechin. arXiv: 1604.03084
- "No bad local minima: Data independent training error guarantees for multilayer neural networks." Daniel Soudry and Yair Carmon. arXiv: 1605.08361
- "Efficient Hyperparameter Optimization and Infinitely Many Armed Bandits." Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. arXiv: 1603.06560